

DIRECTORATE GENERAL FOR INTERNAL POLICIES

POLICY DEPARTMENT C: CITIZENS' RIGHTS AND
CONSTITUTIONAL AFFAIRS

LEGAL AFFAIRS

Legal aspects of free and open source
software

COMPILATION OF BRIEFING NOTES

WORKSHOP
Tuesday, 9 July 2013

JAN 4 Q 1

PE 474.400 EN

This document was requested by the European Parliament's Committee on Legal Affairs.

RESPONSIBLE ADMINISTRATORS

Danai PAPADOPOULOU
Policy Department C: Citizens' Rights and Constitutional Affairs
European Parliament
B-1047 Brussels
E-mail: danai.papadopoulou@europarl.europa.eu

Rosa RAFFAELLI
Policy Department C: Citizens' Rights and Constitutional Affairs
European Parliament
B-1047 Brussels
E-mail: rosa.raffaelli@europarl.europa.eu

EDITORIAL ASSISTANCE

Marcia MAGUIRE
Policy Department C: Citizens' Rights and Constitutional Affairs

LINGUISTIC VERSIONS

Original: EN

ABOUT THE EDITOR

To contact the Policy Department or to subscribe to its monthly newsletter please write to:
poldep-citizens@europarl.europa.eu

European Parliament, manuscript completed in July 2013.
© European Union, Brussels, 2013.

This document is available on the Internet at:
http://www.europarl.europa.eu/studies

DISCLAIMER

The opinions expressed in this document are the sole responsibility of the author and do
not necessarily represent the official position of the European Parliament.

Reproduction and translation for non-commercial purposes are authorised, provided the
source is acknowledged and the publisher is given prior notice and sent a copy.

Workshop: Legal aspects of free and open source software
__

 3

CONTENTS

An introduction to the most used FOSS license: the GNU GPL license 6
Dr. Eben Moglen, JD and Ian Sullivan, Columbia Law School

Developing an EU model: the EUPL license 13
Patrice-Emmanuel Schmitz, Developer of the EUPL

A discussion of the different software licensing regimes 30
Avv. Carlo Piana, Lawyer

Legal aspects of free and open source software in procurement:
guidelines developed at the EU level 50
Rishab Ghosh, UNU-MERIT

Legal aspects of free and open source software in procurement:
national case studies 68
Philippe Laurent, University of Namur

Legal aspects of free and open source software in procurement:
the example of the City of Munich 89
Oliver Altehage, Kirsten Böge & Dr. Jutta Kreyss

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 4

LIST OF ABBREVIATIONS

AGPL Affero General Public License

APL Apache Public License

BSD Berkeley Software Distribution

EC European Commission

EIF European Interoperability framework

EPL Eclipse Public Licence

EU European Union

EUPL European Union Public Licence

FDL Free Documentation License

FOSS Free and/or Open Source Software

FLA Fiduciary Licensing Agreement

FLOSS Free/Libre Open Source Software

FRAND Fair, Reasonable and Non Discriminatory (licensing terms)

FSF Free Software Foundation

GCC GNU C Compiler

GNU GNU's Not Unix

GPL GNU General Public License

IMIO Intercommunale de Mutualisation Informatique et Organisationnelle

IP Intellectual Property

ISA Interoperable Solutions for Administrations (a EC programme,

complementing the previous IDA and IDABC)

ISV Independent Software Vendor

IT (ICT) Information (& Communication) Technology

Workshop: Legal aspects of free and open source software
__

 5

KDE K Desktop Environment

LGPL Lesser General Public License

MPL Mozilla Public Licence

NIF National Interoperability Framework

NOIV Nederland Open In Verbinding

OSI Open Source Initiative

OSS Open Source Software (see: FOSS)

SaaS Software as a Service (i.e. applications used in the cloud)

PAs Public Administrations

SDO Standard Definition Organisation

SFLC Software Freedom Law Center

W3C World Wide Web Consortium

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 6

An introduction to the most used FOSS license:
the GNU GPL license

Dr. Eben Moglen, JD and Ian Sullivan,
Columbia Law School

ABSTRACT
The public drafting and discussion of GPLv3 in 2006-07 was a landmark in non-
governmental transnational law-making. Free and open source software production
communities are held together by copyright licensing, as are free cultural production
communities like Wikipedia. Their efforts to improve those licenses—to increase their utility
in multiple legal systems, to take account of technical and economic changes in the field,
and to increase their efficiency of operation and enforcement—are among the most
important examples of genuinely democratic, participatory law-making that we have
experienced so far in the 21st century.

CONTENT

EXECUTIVE SUMMARY 6

1 THE GPL AND COPYLEFT 7

2 CREATING VERSION THREE OF THE GNU GENERAL PUBLIC LICENSE
(GPLV3) 8

3 THE PUBLIC CONSULTATION 9

4 THE DRAFTS 11

CONCLUSION 12

EXECUTIVE SUMMARY
The public drafting and discussion of GPLv3 in 2006-07 was a landmark in non-
governmental transnational lawmaking. Free and open source software production
communities are held together by copyright licensing, as are free cultural production
communities like Wikipedia. Their efforts to improve those licenses—to increase their utility
in multiple legal systems, to take account of technical and economic changes in the field,
and to increase their efficiency of operation and enforcement—are among the most
important examples of genuinely democratic, participatory law-making that we have
experienced so far in the 21st century. In the interest of improving both the European
Parliament’s access to the details of this particular process, and to assist it in self-scrutiny,
with respect to its extraordinary consistency in missing its opportunities in this area,
Software Freedom Law Center (SFLC) submits the records of this process, which it assisted
its client, the Free Software Foundation, to design and execute. 1

1 While this 19 month transnational consultation process operated entirely on Free Software, the procedures of
this Parliament require the use of proprietary document production tools and formats in order to discuss it on the
public record. This document is the closest approximation to those formats that can be produced using
internationally recognized standard formats and Free Software document production tools that are available to all

Workshop: Legal aspects of free and open source software
__

 7

1 THE GPL AND COPYLEFT
The GPL is the world's most widely used Free Software licence.2 The Free Software
Foundation, the founders of the Free Software movement, defines free software as:

[S]oftware that respects users' freedom and community. Roughly, the users
have the freedom to run, copy, distribute, study, change and improve
the software. With these freedoms, the users (both individually and
collectively) control the program and what it does for them.3

The GPL preserves these freedoms for its users through a series of requirements in the
licence. Originally designed for use in the GNU project to build a fully free computer
operating system, these licence requirements are collectively referred to as “Copyleft”. The
GNU project's explanation of Copyleft follows.

1.1. What is Copyleft?4
Copyleft5 is a general method for making a program free software and requiring all
modified and extended versions of the program to be free software as well.

The simplest way to make a program free is to put it in the public domain,6 uncopyrighted.
This allows people to share the program and their improvements, if they are so minded.
But it also allows uncooperative people to convert the program into proprietary software.7
They can make changes, many or few, and distribute the result as a proprietary product.
People who receive the program in that modified form do not have the freedom that the
original author gave them; the middleman has stripped it away.

In the GNU project,8 the aim is to give all users the freedom to redistribute and change
GNU software. If middlemen could strip off the freedom, there might be many users, but
those users would not have freedom. So, instead of putting GNU software in the public
domain, it has been “copylefted”. Copyleft says that anyone who redistributes the software,
with or without changes, must pass along the freedom to further copy and change it.
Copyleft guarantees that every user has freedom.

Copyleft also provides an incentive9 for other programmers to add to free software.
Important free programs (such as the GNU C++ compiler) exist only because of this.

Copyleft also helps programmers who want to contribute improvements10 to free software11
get permission to do that. These programmers often work for companies or universities
that would do almost anything to get more money. A programmer may want to contribute
his/her changes to the community, but her employer may want to turn the changes into a
proprietary software product.

When the employer is told that it is illegal to distribute the improved version except as free
software, the employer usually decides to release it as free software rather than throw it
away.

To copyleft a program, it is first stated that it is copyrighted; then, distribution terms are
added, which are a legal instrument that gives everyone the rights to use, modify, and
redistribute the program's code or any program derived from it but only if the distribution
terms are unchanged. Thus, the code and the freedoms become legally inseparable.

EU citizens. The requirement to use proprietary fonts, formats and tools in discussing EU free and open source
software policy is a testament to the incoherence of that policy.
2 http://osrc.blackducksoftware.com/data/licenses/.
3 Emphasis original, from The Free Software definition - https://www.gnu.org/philosophy/free-sw.html.
4 Text of this section is taken almost verbatim from the Free Software Foundations' licence description text, which
is available at https://www.gnu.org/licenses/.
5 See https://www.gnu.org/copyleft/copyleft.html.
6 See https://www.gnu.org/philosophy/categories.html#PublicDomainSoftware.
7 See https://www.gnu.org/philosophy/categories.html#ProprietarySoftware.
8 See https://www.gnu.org/gnu/thegnuproject.html.
9 See https://www.gnu.org/philosophy/pragmatic.html.
10 See https://www.gnu.org/software/software.html#HelpWriteSoftware.
11 See https://www.gnu.org/philosophy/free-sw.html.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 8

Proprietary software developers use copyright to take away the users' freedom; the GNU
Project uses copyright to guarantee their freedom. That's why the name is reversed,
changing “copyright” into “copyleft”.

Copyleft is a general concept; there are many ways to fill in the details. In the GNU Project,
the specific distribution terms that are used are contained in the GNU General Public
License, the GNU Lesser General Public License (LGPL) and the GNU Free Documentation
License (FDL).

The appropriate license is included in many manuals and in each GNU source code
distribution.

The GNU GPL is designed so that it can easily be applied to any program by the copyright
holder. The copyright holder doesn't have to modify the GNU GPL to do this, but just to add
notices to the program which refer properly to the GNU GPL. However, if someone wishes
to use the GPL, he/she must use its entire text: the GPL is an integral whole, and partial
copies are not permitted. The same applies to the LGPL, Affero GPL, and FDL.

Using the same distribution terms for many different programs makes it easy to copy code
between various different programs. Since they all have the same distribution terms, there
is no need to think about whether the terms are compatible. The Lesser GPL includes a
provision that allows altering the distribution terms to the ordinary GPL, so that one can
copy code into another program covered by the GPL.

2 CREATING VERSION THREE OF THE GNU GENERAL

PUBLIC LICENSE (GPLV3)
On January 16th, 2006 the GPL version 3 revision process began with a conference at the
Massachusetts Institute of Technology. With approximately 350 participants, including 87
invited delegates serving on one of four discussion committees, this conference served as
the public introduction to what would become a nearly 19 month consultation process
designed to include every stake holder in one of the most widely used software licenses in
the world.

2.1 The GPLv2
In January 2006, GPL version 2 was one of the most widely used software licenses in the
world, a legal document tying together individuals, groups, governments, and private
institutions on every continent. When GPLv2, the first version to achieve widespread
adoption, was originally released in June 1991, Free Software was a small movement
geographically centered around the Massachusetts Institute of Technology. In the nearly 15
years since that event, Free Software had grown by orders of magnitude, taking its place
as a pillar of both business and non-commercial computer usage. The changing software
landscape posed challenges for the 15 year old license. In the intervening years, software
patents had become a reality in the United States, DRM technologies12 and anti-
circumvention laws were creating new restrictions on computer users’ freedoms, software
licensed under the GPL had spread to a multitude of different legal jurisdictions, and new
Free Software licenses had been written with provisions that made them technically
incompatible with the GPL even where the communities using both licenses wished to
cooperate. Change was needed to address these issues but rewriting the license by itself
would have little effect. The GPL itself is not a law and all participants in the community
join voluntarily. Changing the legal norms of that community would require a large process
of outreach, discussion, and listening to ensure that the final terms of the new license
would be not just acceptable but attractive to all members. After six months of planning,
the Free Software Foundation and the Software Freedom Law Center launched the GPLv3
revision campaign to do just that.

12 “Digital Restrictions Management” or “Digital Rights Management” tools, known more commonly as “DRM,” are
access control technologies that seek to dictate what an individual may do with digital content.

Workshop: Legal aspects of free and open source software
__

 9

2.2 The Process Definition
From the beginning the GPLv3 revision process was designed to be inclusive and
transparent. As such, it began with the release of a Process Definition document13 outlining
the structure of the revision process. This listed how many drafts were planned, the
estimated time frame for their release, what information would be released about the
reasoning behind any changes to the license at each stage, how to participate in the
process, how that participation would be incorporated in writing new versions, and FSF’s
guiding principles in revising the license. While the final version of this 22 page document
was released on January 15, 2006, just before the first international conference, early
versions had been available to the public for six weeks prior to that date. Even in defining
the process FSF wished to listen to the community. The final process definition outlined
three main avenues for public participation: commenting on the public website, attending
one of the international conferences, or participating on one of four discussion committees.

3 THE PUBLIC CONSULTATION
3.1 The Website: Stet
In order to enable direct participation in changing the text of the GPL, and do so on a large
scale, the FSF commissioned the construction of custom software named “Stet”. Stet’s goal
was to enable transparent commenting on versions of the license text as they were
released. This required both the ability to easily make comments, either through the web or
via email, and the ability to see what portions of the text others had commented on. At the
time, this kind of collaborative commenting system was completely novel. After the
successful completion of the GPL revision process, a number of government representatives
contacted SFLC and FSF about adopting Stet for use in public discussions of pending
legislation. FSF released Stet as free software under the GPL, and it has even been
improved upon and enhanced into the “co-ment”14 system by Phillip Aigrain’s Paris-based
firm Sopinspace.15

As discussed in the comment system documentation,16 every effort was made to ensure
that public discussion would remain productive. This was accomplished through a focus on
diplomacy and public engagement at all times and by requiring that each comment be tied
to specific language in the draft or language that should be inserted into the draft rather
than opening the door to demands and opinions disconnected from license text. As a result,
and despite sometimes heated tempers during the course of the 19 month process, the
public comments remained productive without any moderation.

In total, 2,635 comments were made over the course of the revision process. All four drafts
of the GPLv3 are still available with their public comments visible. As explained in the
documentation, areas of the text with highlighting indicate areas with corresponding
comments. The color of the highlight indicates the volume of the comments on that section,
with yellow as the lowest volume of comments and red as the highest volume. In order to
view the comments associated with a particular highlighted section, one simply needs to
click on the text and the comments will load on the screen to the right of the license text.

 Draft 1, with 967 comments17

 Draft 2, with 727 comments18

 Draft 3, with 649 comments19

 Draft 4, with 292 comments20

13 http://gplv3.fsf.org/original-process-definition/
14 http://www.co-ment.com/
15 http://www.sopinspace.com
16 http://gplv3.fsf.org/wiki/index.php/Comment_system
17 http://gplv3.fsf.org/comments/gplv3-draft-1
18 http://gplv3.fsf.org/comments/gplv3-draft-2
19 http://gplv3.fsf.org/comments/gplv3-draft-3

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 10

3.2 Public events
For those who could not or did not wish to participate in the license revision process online,
a series of conferences and community events were organized where individuals could
discuss their concerns and ideas directly with representatives from the FSF and SFLC. In
total 18 events were held in a dozen countries. These events included five conferences
organized specifically for the discussion of the GPL revision:

 January 16th, 2006. Boston

 April 21st, 2006. Porto Alegre

 June 22nd and 23rd, 2006. Barcelona

 August 23rd, 2006. Bangalore

 November 21st and 22nd, 2006. Tokyo

To expand the discussion further, community organizations and conference organizers were
encouraged to put together sessions at related conferences:

 February 10th, 2006. Bologna, Italy: Incontro al Master in Tecnologie del Software
Libero

 March 18th, 2006. Torino, Italy: GPLv3 presented by Richard Stallman

 May 12th, 2006. Milano, Italy: Giornata di studio sul TCPA

 May 29th, 2006. Manchester, UK

 August 29nd, 2006. Dataföreningen Region West, Sweden

 August 30th, 2006. Copenhagen, Denmark: “Do you know enough about GPLv3?”

 September 6th, 2006. Oruro, Bolivia: VI Congress on Free software

 September 9th, 2006. Pisa, Italy: Lesson at Master for management of Free
Software

 September 15th, 2006. Berlin, Germany: GPLv3 workshop at WOS4

 September 26th, 2006. Dublin, Ireland: GPL: What can v3 improve?

 October 13-15, 2006. Mendoza. Argentina

 November 4th, 2006. Dublin, Ireland: GPLv3, DRM, and the Linux kernel

 April 1, 2007. Brussels, Belgium: GPLv3 - Improving a Great Licence

Further details and event records for all these GPLv3 related meetings are available from
http://gplv3.fsf.org/wiki/index.php/Event_Planning

3.3 Discussion Committees
In addition to these methods of encouraging individual participation, four discussion
committees were formed to give representatives of the different groups with a stake in the
license a forum for expressing the concerns of their communities and coordinating with
each other. Members of these committees were asked to both represent their particular
communities and actively seek out and engage other members of those communities so
that everyone with a concern about the license would have a voice.

The committees were loosely organized into individual users and developers (Committee
D)21, commercial distributors and users (Committee B)22, non-profit distributors and public
or private institutional users (Committee C)23, and representatives of international
communities and large free software projects using non-GPL licenses (Committee A)24. In

20 http://gplv3.fsf.org/comments/gplv3-draft-4
21 Committee D materials - http://gplv3.fsf.org/discussion-committees/D/members
22 Committee B materials - http://gplv3.fsf.org/discussion-committees/B/memberlist
23 Committee C materials - http://gplv3.fsf.org/discussion-committees/C/memberlist-public
24 Committee A materials - http://gplv3.fsf.org/discussion-committees/A/committee-A-bios

Workshop: Legal aspects of free and open source software
__

 11

total 87 representatives from these different communities were invited to form the
committees with each committee also given the ability to add what other members they
saw fit.

Each committee had a representative from the Free Software Foundation participate during
meetings in order to help ensure that the discussions there were taken into consideration in
preparing the next draft of the GPL. Each committee was given control of how and when
they would meet and how much of their discussions they would make public. While
Committee D choose to meet in public Internet Relay Chat (IRC) rooms and on a publicly
archived mailing list, Committee B met mostly in person or on the phone and opted to keep
their discussions confidential until six months after the license’s release. Committees A and
C opted for less formal rules. Many of these discussion materials are still available today,
including the full minutes from Committee B25 and both the IRC26 and mail27 records from
Committee D.

In total these committees met for 80 or more hours during the course of the revision
process.

4 THE DRAFTS
In total, four discussion drafts were promulgated by the FSF, though the initial process
document had only anticipated three. The need for an additional draft was recognized when
Microsoft and Novell announced their joint patent agreement on November 2, 200628 which
contained discriminatory promises of patent safety29.

Each discussion draft was accompanied by a rationale document. These documents
contained the details of changes made since the previous version along with detailed
reasons for each modification. The first rationale presented the FSF’s goals in beginning the
GPL revision process and an introduction to the modifications made since the GPLv2. Each
subsequent rationale took the form of a strike-through version of the license highlighting
the changes made between draft versions and footnotes explaining the reasons for each
modification.

 1st discussion draft: http://gplv3.fsf.org/gpl-draft-2006-01-16.html

◦ side by side comparison between GPLv2 and GPLv3-draft1:
http://www.groklaw.net/articlebasic.php?story=20060118155841115

◦ rationale: http://gplv3.fsf.org/gpl-rationale-2006-01-16.html

◦ Transcript of presentations at GPLv3 launch conference on January 16th, 2006:
http://www.ifso.ie/documents/gplv3-launch-2006-01-16.html

 2nd draft: http://gplv3.fsf.org/gpl-draft-2006-07-27.html

◦ rationale (pdf): http://gplv3.fsf.org/gpl3-dd1to2-markup-rationale.pdf

 3rd draft: http://gplv3.fsf.org/gpl-draft-2007-03-28.html

◦ rationale (pdf): http://gplv3.fsf.org/gpl3-dd3-rationale.pdf

◦ FAQ: http://gplv3.fsf.org/dd3-faq

 4th draft (final call): http://gplv3.fsf.org/gpl-draft-2007-05-31.html

 rationale (pdf): http://gplv3.fsf.org/gpl3-dd4-rationale.pdf

 Final GPL text: http://www.gnu.org/licenses/gpl-3.0.html

25 Committee B meeting minutes - http://gplv3.fsf.org/discussion-committees/B/Minutes/
26 Committee D IRC meeting minutes - http://gplv3.fsf.org/discussion-committees/D
27 Committee D mailing list archive - http://gplv3.fsf.org/pipermail/committee-d/
28 https://www.fsf.org/licensing/2007-03-28-gplv3-grandfather
29 https://www.fsf.org/news/microsoft_response

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 12

 rationale (pdf): http://www.gnu.org/licenses/gpl3-final-rationale.pdf

 Announcement video:
http://gplv3.fsf.org/static/release/rms_gplv3_launch_high_quality.ogg

 Transcript of announcement video:
http://gplv3.fsf.org/rms_gplv3_launch_transcript

 FSF’s “Quick Guide to GPLv3” about final license:
https://www.gnu.org/licenses/quick-guide-gplv3.html

CONCLUSION
The GPLv3 process, documented in the foregoing materials, shows how highly specialized
and economically sensitive law-making can be undertaken in a non-hierarchical and
cooperative fashion, allowing individuals and powerful commercial organizations equal
opportunities for participation. FOSS licensing can and should be done, as most forms of
transitional regulation should be achieved, in multilateral cooperative processes.

The European Commission was invited to participate in the making of GPLv3. A
representative of DGInfso attended the initial international conference at MIT on January
16. 2006, and was invited to join Discussion Committee B. The Commission declined to
participate, on the ground that it could only participate in government-to-government
processes, and although other governments (the Commonwealth of Massachusetts, for
example) were participating, apparently they were not governments of the Commission’s
level of dignity and importance. It seems appropriate, on the present occasion, to consider
these events.

Workshop: Legal aspects of free and open source software
__

 13

Developing an EU model: the EUPL license
Patrice-Emmanuel Schmitz, Developer of the EUPL

ABSTRACT
The European Union Public Licence (EUPL) is a free or open source software licence,
copyrighted by the European Union. It has been drafted by the Commission (under the
IDAbc and ISA programmes) as from 2005 and launched in January 2007. Everyone can
use it and at the end of 2012, about 500 projects were licensed under the EUPL. The
present note analyses the legal aspects of the new version 1.2 of the EUPL, elaborated in
2013.

CONTENT

EXECUTIVE SUMMARY 13

1. MOTIVATION AND HISTORY OF THE EUPL 14

2. RIGHTS GRANTED TO RECIPIENTS BY THE EUPL 17

3. WHAT MAKES THE EUPL SPECIFIC? 18

4. INTEROPERABILITY OF THE EUPL 19

REFERENCES 24

ANNEX: TEXT OF THE EUPL (V1.2 – ENGLISH VERSION) 24

EXECUTIVE SUMMARY
The EUPL is the European Union Public Licence, published by the European Commission
(EC). It has been studied and drafted as from 2005 and launched in January 2007. Until
June 2013, the sole working version was the multilingual EUPL v1.1 (January 2009). In
2012, it was used for more than 500 software and non-software projects across Europe.

The EUPL is a Free/Open Source Software (FOSS) licence. The immediate objective thereof
was that software produced under the IDA/IDABC/ISA programmes could be licensed by
the EC, in a way it could be reused, improved and integrated by any recipient. The long
term strategy is to bring more licensors (mainly from public sector) to follow this example.
The EUPL is also a share-alike (or “copyleft”)30 licence resulting from the aim to avoid
exclusive appropriation of the covered software. The EUPL is a share-alike on both source
and object code. The EUPL can be used by everyone: European institutions, Member
States, economic operators and individuals.

In 2009, the EUPL v1.1 was certified by the leading open source organisation, the OSI
(Open Source Initiative) as the first and sole “OSI-approved licence” with multilingual
working value (in 22 languages of the European Union).

30 « Copyleft » or « Share Alike » is the obligation (i.e. in the GPL family of licences, the EUPL, the OSL) to reuse
the same licence when redistributing a covered software A, or a derivative of A.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 14

As from 2012, the EC objective is to reinforce its legal tools (including the EUPL) for more
sharing, reuse and interoperability. If “copyleft” aims to protect against appropriation,
licence conflicts may also create legal barriers between FOSS communities. Therefore the
EUPL includes an appendix of “compatible licences” providing interoperability with a list of
similar licences. As this list (based on a 2006 study) was outdated, and to consider changes
in the European legal framework a new release of the EUPL (v 1.2) was drafted and
submitted to public consultation.

Modifications introduced by the EUPL v1.2 are limited : official EU institutions
denominations were adapted according to the Lisbon Treaty, provisions are about “the
Work” (in more general terms), additional agreements may cover a larger scope than just
services and warranty (i.e. jurisdiction, venue) and interoperability is extended to new
licences: GPL v3, AGPL v3, LGPL, MPL v2.

The publication of v1.2 has no impact when software was expressly covered “by the EUPL
v1.1 only” (current licensors may opt for updating, or not), but v1.2 is compatible with
v1.1, which can still be used.

1. MOTIVATION AND HISTORY OF THE EUPL

KEY FINDINGS
 The lack of FOSS licences fully compatible with the European legal framework and

having a working value in all the European Union languages was the main
motivation for writing a new European licence.

 The decision for publishing the EUPL is the outcome of a maturation process over
many years.

 Writing the EUPL was a collective work coordinated by the Commission.

 The EUPL is not used “only” as a licence, but also as a reference for public
procurement (for ensuring full software distribution rights to the contracting
authority).

 A new version, drafted in March 2013 and planned for publication in June or July,
will improve interoperability.

1.1 EUPL requirements
From 2001 to 2005 the question was: “How to share EC software and encourage public
sector to do the same”? No sharing (redistribution for reusing, adapting etc.) can be done
without a distribution licence. The requirements for this licence were as follow:

1. A (software) licence granting Free (or Open Source) software freedoms;

2. Ensuring protection from exclusive software appropriation (therefore being a “share
alike” or “copyleft” licence);

3. Working value in all official EU languages (no need for sworn translator in Court);

4. Checked conformity with European copyright law and terminology;

5. Coverage of “communication to the public” including Web distribution / Software as a
Service - SaaS (in such case, the software is not distributed as a downloaded package
or as a CD-Rom, but as an application that remote users access via Internet);

6. Clarification of applicable law and competent court, as requested by EU institutions;

Workshop: Legal aspects of free and open source software
__

 15

7. “Case law compatible” approach of warranty and liability (a general exclusion of liability
is not valid facing European courts);

8. Not too long, not too complex, comprehensive and pragmatic.

During the EUPL elaboration in 2006, no existing licence was found to correspond to at
least four key requirements (N° 3, 4, 6 and 7).

Therefore, the decision of writing the EUPL was taken. The EUPL is not a « Vanity licence »
(where the main motivation of the author is just to forge « its own » licence and attach its
name to it): it answers to a number of real issues, starting from the fact that governments
and public sector organisations in general are often legally obliged to use legal instruments
with a working value in their local language (N° 3).

This point is too often misunderstood by developers, especially in the US (but not only!):
English is the developers’ lingua franca and they consider as strange, not to say "totally
irrelevant" (not to use any stronger terms!), any request by licensors or recipients to obtain
working translations in another language.

At least three additional points were also very important to clarify (N°4, 6, 7): terminology,
applicable law / competent court, warranty and liability.

Other points are not unique to the EUPL, even if the coverage of SaaS is still a rarity (the
GNU Affero General Public License built on the GPL v3 presents similar characteristics on
this specific point). Some licences (in particular the very permissive ones, like the BSD or
the MIT) are much shorter, but it is commonly acknowledged that the EUPL is concise and
comprehensive compared with some other “copyleft” licences.

1.2. EUPL History
The EUPL has an already long story, responding to the question: how to distribute and
share European Institutions’ software?

However, the wide use of the EUPL started in 2009, when the licence was translated in 22
linguistic versions and received approval from the Open Source Initiative (OSI).

Here is a rough timetable of the EUPL history:

 2001-2005 - “How to distribute EC software?”

 2005 - Public consultation - Decision to create the EUPL

 2006 - Study (CRID) for making the EUPL interoperable

 2007 (January) - EUPL v1.0 approved by EC Commissioners

 2008 - Elaboration of 22 linguistic « working versions »

 2009 - EUPL v1.1 approved by EC Commissioners

 2009 (March) - EUPL v1.1 certified by OSI.org

 by end 2012 - More than 500 projects distributed

 2013 - Public consultation on the EUPL v1.2 (December 2012– March 2013)

 2013 - final draft EUPL v1.2 published (probably in June or July, depending on
translation and approval by the College of Commissioners).

1.3. Who wrote the EUPL?
In addition to the public consultation, which provided substantial improvements, about 50
persons contributed to the writing of the EUPL. The work from the original team was
complemented by contributions from IPR lawyers from 22 Member States.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 16

Figure 1 List of EUPL contributors

1.4. EUPL impact and licence proliferation
In the early days of free/open source software (until the year 2000) the GPL v2 licence and
its LGPL “library” variant were adopted by some 90% of all FOSS projects.

Since then, the number and the frequency of use of other licences have increased strongly.
The GPLv3 and AGPLv3 introduced in 2007 have not replaced the previous GPLv2, which
still seems to be the most used licence (i.e. by Linux). Some important business projects
are driven by foundations (Apache, Mozilla etc.) promoting other FOSS licences. Such
licence proliferation may be considered as unfortunate, because it has made the work of
developers more complex, but it looks a definitive fact: nearly every day or week, new
licences are drafted, and the task of “OSI licence reviewers” seems endless.

To compensate the issue of licence proliferation, EUPL has chosen the way of
interoperability (see section 4). The EUPL inspires also other governments (i.e. Quebec in
Canada), which have requested to modify the EUPL for using it as template for their own
needs. In such case, maintaining the same list of compatible licences may strongly reduce
the impact of licence proliferation.

Similarly, the new (2013) version 2.1 of the CeCILL licence (used by French administration)
includes now the EUPL and the GPL as downstream compatible licences, which looks
positive for developers from both communities.

During the last months, the use of the EUPL for licensing projects was strongly growing. A
November 2012 evaluation counted about 500 projects (some of them with up to 100
licensed files), and new projects are published every week. The European Parliament has
selected the EUPL for the distribution of its first large FOSS project, AT4AM31.

1.5. The EUPL used as a “reference”
Another interest of the EUPL is to be part of the European Interoperability Framework (EIF)
and to be used as a reference, especially in public software requirements and procurement
agreements32. In line with the EU ministerial declarations on the opportunity to reduce

31 http://www.at4am.org/eupl/
32 See the Guide for the procurement of standard-based ICT / Elements of Good Practice – (European Economics
23 March 2012) - http://cordis.europa.eu/fp7/ict/ssai/docs/study-action23/d3-guidelines-finaldraft2012-03-22.pdf
and the ISA standard “Sharing and reusing clauses”
http://joinup.ec.europa.eu/elibrary/document/isa_share_reuse_d_2-1-standard-sharing-and-re-using-clauses-
contracts

Workshop: Legal aspects of free and open source software
__

 17

development costs by sharing and reusing software, contracting authorities must obtain
from their suppliers the right, not only to use but also preserve their rights to redistribute
the developed software in the future, as the case may be (i.e. in case the development is
successful, interesting for other stakeholders, and if a sharing decision is taken by the
authorities).

Therefore, suppliers must not only give the “property” of the solution (including the
software code), but must also grant that it can be legally distributed to third parties by the
contracting authority, without any copyright issue or licence conflicts (in case several
components of the solution were obtained under non-compatible FOSS licences) and royalty
free (in case some proprietary standard or patents were implemented).

Example of such provision:

“The supplier will grant that the purchasing authority has the right to distribute the
delivered application under the European Union Public Licence (EUPLv1.1 or later) or
any licence(s) providing the rights stated in the article 2 of the EUPL.”

A reference to the EUPL is especially convenient due to its multi-lingual validity: it can be
part of specifications written in any language of the EU.

1.6. The EUPL v1.2
The most recent evolution is the EUPL v1.2 drafted at the beginning of 2013 and is planned
to be published in June or July 2013. This version is very similar to the previous v 1.1
(which can still be used), but presents the following differences:

 The terminology is adapted in consideration of the Lisbon Treaty (mainly the name
of EU institutions, references to the TFEU);

 The licence covers “the Work” (which can be software, but also any other kind of
copyrighted work: data, specifications, documentation etc.);

 The scope of possible “additional agreements” is enlarged (i.e. they may cover
jurisdiction and any other provisions, in so far as the granted rights are not
restricted);

 The list of compatible licences is extended to licences published after the initial
EUPL: GNU GPLv3, AGPLv3, MPLv2 etc.

2. RIGHTS GRANTED TO RECIPIENTS BY THE EUPL

KEY FINDINGS
 Rights granted to recipients are the rights granted by all (certified) FOSS licences.

 In addition, these rights must be royalty free.

According to article 2 of the EUPL, the rights granted to the recipients of the covered
software (or, under EUPL v1.2, Work) constitute a world-wide, royalty-free, non-exclusive
licence to:

• use the Work in any circumstance and for all usage,

• reproduce the Work,

• modify the Original Work, and make Derivative Works,

• communicate to the public, including the right to make available or display the Work
or copies thereof to the public and perform it publicly,

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 18

• distribute the Work or copies thereof,

• lend and rent the Work or copies thereof,

• sub-license rights in the Work or copies thereof.

No type of activity (i.e. commercial use) is prohibited by the EUPL: any enterprise can use
the covered work for its commercial activities.

One may sell software or works covered by the EUPL and related services at a determined
price (i.e. a lump sum representing a participation to the development costs of a standard
or of a software, a maintenance fee for support services etc.), but once this is done, the
covered work cannot be subject to the management of royalties (i.e. a fee – even small or
reasonable - per use or per user). This is because the fundamental principle of FOSS is the
freedom granted to all possible recipients in the world to make derivative works and to
redistribute such works to anyone, making the “control” of the use and the management of
royalties impossible.

Therefore, if software developers, standard developing organisations (SDO) or patent
owners may cover their costs by adopting a FRAND (fair reasonable and non discriminating)
licensing policy for using their work in proprietary implementations, they should also adopt
a second (dual) royalty free licensing policy (like the EUPL) if they don’t want to see their
standard or specification totally ignored by FOSS implementations. This would not be
discriminatory against non-FOSS (or proprietary) implementations, as FOSS is not a group,
a product or a technology, but a legal regime that anyone may adopt.

Concerning the use of patents, the same article 2 states that the EUPL licensor grants to
the recipient of the work a royalty-free, non exclusive usage rights to any patents held by
the licensor, to the extent necessary to make use of the rights granted on the work
distributed under the EUPL licence.

3. WHAT MAKES THE EUPL SPECIFIC?

KEY POINTS
 The EUPL is the sole FOSS licence working in 22 languages (more will be added).

 At the contrary of other licences, the EUPL specifies an explicit warranty that
contributors have copyright on their contributions.

 A single jurisdiction (the CJEU) could be requested to interpret the EUPL and
copyright law in case of legal problems / litigation.

 A unique, variable "copyleft" applies, in order to ensure interoperability.

The EUPL is specific and different from all other FOSS licences on a number of points:

• Multilingualism:
This point is the most visible: like many other European Union legal instruments, the
EUPL is available in 22 languages. Gaelic and Croatian version still have to be
published.

• Terminology
The EUPL is drafted to work under European Law, even if it may be used outside the
European Union and submitted to third country courts. Relevant provisions applie to
the copyright terminology (the “communication to the public”), to the reasonable
limitation of liability, to the reference to European treaties.

Workshop: Legal aspects of free and open source software
__

 19

• Warranty
The covered work is given without warranty, except one: the original licensor and
every subsequent contributor grant that they are the authors (or received licence)
for their own contribution. This contributes to the security of the licence (regarding
possible copyright infringements) and is finally the type of requirement that you will
find in all reasonable contributor agreements.

• Reference to the European Court
Taking advantage of the treaties (TFEU) the EUPL benefits from interpretation by a
unique jurisdiction: the Court of Justice of the European Union. In addition, the 28
Member States jurisdictions can address questions and be supported by a single
European Court.

• Variable “Copyleft”
The EUPL is “copyleft” on code and binaries, but this share-alike effect is, by
exception for interoperability, variable33 in the case of combined derivatives (see
section 4 hereafter).

• Innovative ethic of interoperability and freedom

These ensure that there is no exclusive appropriation of the software.

4. INTEROPERABILITY OF THE EUPL

KEY FINDINGS
 The EUPL has traced an original way to be “copyleft” and interoperable with other

licences.

 This facilitates the development of other “son & grandson” projects, but has no
impact on a project covered by the EUPL: there is no project relicensing.

 The notion of “strong copyleft” is still unclear and it may be that it could not be
enforced in Europe.

 The EUPL approach is pragmatic, avoiding exclusive appropriation of the covered
code without preventing some reuse in the framework of projects with a commercial
goal.

4.1. What is legal interoperability?
Interoperability (at licence level) is the possibility to reuse the covered code in other
projects, possibly in combination with code(s) covered by other licences, while keeping the
freedom to distribute the resulting combination, even when considered as a derivative work
under copyright law.

Interoperability is a non-issue with permissive licences (as the BSD, the MIT) because they
implement no conditions for copying or merging the covered code, even inside the software
code of proprietary applications.

However, interoperability is an issue when a declared objective of the licence is to keep the
covered code and its evolutions under FOSS conditions, in order to avoid its exclusive
appropriation.

The EUPL is a Share Alike (or "Copyleft") licence. Thus, the following question is often
posed: How strong is the EUPL “copyleft”? In other words, how far must any re-distribution
be done under the same EUPL licence, according to a share alike principle? And therefore,

33 The notion of « variable copyleft » was coined for the EUPL by Rowan Wilson (Oxford University)
http://www.oss-watch.ac.uk/resources/eupl

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 20

is the work protected from subsequent distribution under other licensing terms, which could
lead to appropriation for the benefit of a third party software vendor?

In Europe, there are still some doubts whether “strong copyleft”, whereby simply linking34
the code covered by a "copyleft" licence with another source code automatically extends
the coverage of the licence to this other source, would be generally considered lawful (in
any EU member state and whatever the licence, GPL, EUPL or any other could be). There
are specific exceptions for interoperability implemented by Directive 91/250 on the legal
protection of computer programs. In May 2012, the Court of Justice of the European Union
interpreted Directive 91/250, "as meaning that neither the functionality of a computer
program nor the programming language and the format of data files used in a computer
program in order to exploit certain of its functions constitute a form of expression of that
program and, as such, are not protected by copyright in computer programs for the
purposes of that directive"35. Although this judgment was not taken in the framework of
free software distribution, it might have repercussions in this field, too. More particularly, it
might mean that, by licensing his/her work, a copyright holder cannot prohibit the
reproduction and distribution (under any other licensing terms, FOSS or non-FOSS) of the
specific portions of the code that are strictly necessary for linking / implementing
interoperability between the licensed program and other works, that is the data formats or
APIs (application programming interfaces). Hopefully the Court will have the chance to
clarify this matter in future case-law.

4.2. The normal case
Under the abovementioned reservations, we can state that the EUPL “copyleft” is as strong
as possible, on code and binaries of copies and all derivative works, with defined
interoperability exceptions. Let’s first consider the normal case with regard to the
distribution of the code (although a project is not only the code, but also other important
assets (brand name, logo, site, DNS etc.)):

Figure 2: Derivative – the normal case

- A project "ALPHA" is more that just its software code: it is an organisation, owned
by a person or a body, with an active community of developers, a web site, DNS,
logo etc. Globally, this project "ALPHA", can never be "re-licensed" outside the will
of its original licensor (who is free, as the 100% copyright owner, to provide

34 Linking makes two software working in a single application without merging their source code.
o Static linking combines components through compilation, copying them into the target application and

producing a merged object file that is a stand-alone executable.
o Dynamic linking combines components at the time the application is loaded (load time) or during

execution (run time).

35http://curia.europa.eu/juris/document/document.jsf?text=&docid=122362&pageIndex=0&doclang=en&mode=re
q&dir=&occ=first&part=1&cid=564907

Workshop: Legal aspects of free and open source software
__

 21

exceptions or to distribute the software under various licences, called dual or
multiple licensing).

- Re-distribution of the code of a project "ALPHA" covered by the EUPL is possible
inside another project (i.e. "BETA", possibly known as a "forking", with another
owner, brand name, logo, web site etc.), and it must be done under the same EUPL
licence.

Such forking, as described in the latter scenario, is rare, at least when the original licensor
organises an active community around its ALPHA project. If this is the case, all
improvements will be done on ALPHA without any code re-licensing.

By exception, forking may occur for 1) licensing / philosophical reasons or 2) for
functional/technical reasons:

1) A first example, is the case where the ALPHA licensor has lost its independence (i.e.
is purchased by a proprietary vendor), and the community decides to re-launch to
preserve EUPL licensing (not likely to happen if the licensor is a public sector
body) ;

2) A second example is the case where the ALPHA licensor does not want to
integrate/support new functions. For example, the Indian government wants to
localise/adapt software distributed by the European Parliament in local Indian
languages, but the EP does not want to be involved in this process. However, the
new Indian project must also be distributed under the EUPL. The hypothesis where
a significant portion of the covered code is merged in another project is similar: as a
derivative, this project must be covered by the EUPL, in case it is distributed.

Once again, let’s underline the importance of an active supporting community: no forking
will be sustainable in the long term without such a support.

4.3. Exception to the “normal copyleft”
The third paragraph of Article 5 of the EUPL reads as follows:

“If the Licensee Distributes and/or Communicates Derivative Works or copies
thereof based upon both the Original Work and another work licensed under a
Compatible Licence, this Distribution and/or Communication can be done under
the terms of this Compatible Licence.”

In the EUPL v1.2, a list of compatible licences is published in Appendix and contains the
following names:

- GNU General Public License (GPL) v. 2, v. 3

- GNU Affero General Public License (AGPL) v. 3

- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1

- Mozilla Public Licence (MPL) v. 2

- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3

- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) - for works
other than software

- European Union Public Licence (EUPL), any version as from 1.1

The interoperability exception will allow recipients to launch a new project DELTA, to reuse
files or source code covered by one of the above licences in the DELTA project, to insert or
merge the EUPL covered code in DELTA and to licence DELTA as a whole under this
compatible licence.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 22

Figure 3 Exception for compatible licences

Conditions for such « variable copyleft » are as follows:

1. Software code covered by the EUPL is combined in/with another, different work.

2. The combination (larger work) forms a derivative. Merged code must be licensed
globally as a whole. Keeping distinct licences (like for the various parts of an
aggregate) is not possible.

3. The other work, in which the code covered by the EUPL is merged, had been
obtained under a compatible licence (according to the list).

4. The same compatible licence (according to the list) is used to license the new
larger work “as a whole”.

The exception for compatible licence described above should not be understood as the
possibility to "relicense" a project36. As said above, this is obviously not the case: the reuse
of some code in the project "DELTA" will not impact the project "ALPHA".

Is there any risk to see someone licensing some trivial code (like “hello world”) under a
compatible licence for creating a “formal larger work” and licensing it under this compatible
licence? No cases were reported in five years EUPL distribution (2007-2012). It is not the
way FOSS operates. Making trivial forking is losing time and reputation. A forked work is
sustainable only when a working community takes it over and improves it substantially.

4.4. Exception to the exception
Because three of the listed compatible licences are more moderately “copyleft” (or only at
file level) it may be that some code covered by the EUPL could also be reused in a third
generation project covered – in binary executable form - by a non-FOSS licence.

36 For example, the too brief formulation used by the Free Software Foundation may induce recipients in error :
« The EUPL allows relicensing to GPLv2, because that is listed as one of the alternative licenses that users may
convert to » http://www.gnu.org/licenses/license-list.en.html#GPLIncompatibleLicenses

Workshop: Legal aspects of free and open source software
__

 23

Figure 4 Exception to the exception

It is therefore possible that the "daughter project" DELTA:

1. will be (by decision of its licensor and because code under these licences (EPL, LGPL
or MPL) was reused) distributed under one of the more moderately copyleft licences
listed as compatible (EPL, LGPL or MPL);

2. that some code from DELTA will be combined or forked in a "grand-daughter"
project OMEGA, and;

3. that the OMEGA licensor will decide to distribute its executable version under
proprietary terms.

Even in such a case (that has never occurred in real world so far) the portions of the DELTA
code present in OMEGA will stay covered by their licence (EPL, LGPL or MPL): these files
must stay FOSS and publicly available as source code, but the copyleft is limited at file
level according to the provision of these licences (meaning without a pretention for viral
effect impacting the rest of the OMEGA project).

This possible exception has made some analysts to declare that the EUPL "gives recipients
ways to relicense the work under the terms of other selected licenses, and some of those
only provide a weaker copyleft. Thus, developers can't rely on this license to provide a
strong copyleft”37.

This point is of course – at least theoretically – founded. But we have to see it in a context,
and temper it:

- the term “relicense” is especially ambiguous and not appropriate, as previously stated.

- Some compatible licences provide a weaker “copyleft” (LGPL, MPL, EPL): it does not
mean that they are weak or permissive: they are “copyleft”, but at file level, without
pretention to provide a viral effect.

- Providing a “strong copyleft” is not a business ideal in an interoperable world, where
multiple licences coexist. Furthermore, the notion of “strong copyleft” is especially
unclear, debated and has not been confirmed by European case law.

37 FSF – op. cit.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 24

4.5. Conclusion
The above series of example illustrate that the EUPL

- protects effectively the covered code from exclusive appropriation by a third party;

- make some part the covered code reusable in OTHER free software projects (without
re-licensing the original project);

- is not hostile/does not try to prevent the reuse of some code of these other projects
by the software industry.

REFERENCES
 The EUPL v1.1 – text of the licence, in 22 languages – Joinup.eu.

https://joinup.ec.europa.eu/software/page/eupl

 Guidelines for using the EUPL https://joinup.ec.europa.eu/software/page/eupl/eupl-
guidelines

 Guidelines on public procurement of Open Source Software
https://joinup.ec.europa.eu/elibrary/document/guideline-public-procurement-open-
source-software

 Spanish Royal decree 4/2010 (English version) see in particular article 16
http://administracionelectronica.gob.es/recursos/pae_000002017.pdf

 The EUPL in Italy: www.eupl.it

 “Experience of introducing the EUPL in ISTAT” (Carlo Vacari 2010) presentation slides
(in Italian) : http://fr.slideshare.net/vaccaricarlo/introduzione-eupl-in-istat

 Malta public sector software distribution policy
https://www.mita.gov.mt/MediaCenter/PDFs/1_GMICT_P_0097_Open_Source_Software
_v2.0.pdf

 Guide for the procurement of standard-based ICT / Elements of Good Practice –
(European Economics 23 March 2012) - http://cordis.europa.eu/fp7/ict/ssai/docs/study-
action23/d3-guidelines-finaldraft2012-03-22.pdf

 ISA standard “Sharing and reusing clauses”
http://joinup.ec.europa.eu/elibrary/document/isa_share_reuse_d_2-1-standard-
sharing-and-re-using-clauses-contracts

ANNEX: TEXT OF THE EUPL (V1.2 – ENGLISH VERSION)
European Union Public Licence V. 1.2

EUPL © the European Union 2007, 2013

This European Union Public Licence (the “EUPL”) applies to the Work (as defined below)
which is provided under the terms of this Licence. Any use of the Work, other than as
authorised under this Licence is prohibited (to the extent such use is covered by a right of
the copyright holder of the Work).

The Original Work is provided under the terms of this Licence when the Licensor (as defined
below) has placed the following notice immediately following the copyright notice for the
Original Work:

Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

Workshop: Legal aspects of free and open source software
__

 25

1. Definitions

In this Licence, the following terms have the following meaning:

- The Licence: this Licence.

- The Original Work: the work or software distributed and/or communicated by the Licensor
under this Licence, available as Source Code and also as Executable Code as the case may
be.

- Derivative Works: the works or software that could be created by the Licensee, based
upon the Original Work or modifications thereof. This Licence does not define the extent of
modification or dependence on the Original Work required in order to classify a work as a
Derivative Work; this extent is determined by copyright law applicable in the country
mentioned in Article 15.

- The Work: the Original Work and/or its Derivative Works.

- The Source Code: the human-readable form of the Work which is the most convenient for
people to study and modify.

- The Executable Code: any code which has generally been compiled and which is meant to
be interpreted by a computer as a program.

- The Licensor: the natural or legal person that distributes and/or communicates the Work
under the Licence.

- Contributor(s): any natural or legal person who modifies the Work under the Licence, or
otherwise contributes to the creation of a Derivative Work.

- The Licensee or “You”: any natural or legal person who makes any usage of the Work
under the terms of the Licence.

- Distribution and/or Communication: any act of selling, giving, lending, renting,
distributing, communicating, transmitting, or otherwise making available, on-line or off-
line, copies of the Work or providing access to its essential functionalities at the disposal of
any other natural or legal person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a world-wide, royalty-free, non-exclusive, sub-licensable
licence to do the following, for the duration of copyright vested in the Original Work:

- use the Work in any circumstance and for all usage,

- reproduce the Work,

- modify the Original Work, and make Derivative Works based upon the Work,

- communicate to the public, including the right to make available or display the Work or
copies thereof to the public and perform publicly, as the case may be, the Work,

- distribute the Work or copies thereof,

- lend and rent the Work or copies thereof,

- sub-license rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now known or
later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to exercise his
moral right to the extent allowed by law in order to make effective the licence of the
economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non exclusive usage rights to any patents
held by the Licensor, to the extent necessary to make use of the rights granted on the
Work under this Licence.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 26

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as Executable Code.
If the Work is provided as Executable Code only, the Licensor provides in addition a
machine-readable copy of the Source Code of the Work along with each copy of the Work
that the Licensor distributes or indicates, in a notice following the copyright notice attached
to the Work, a repository where the Source Code is easily and freely accessible for as long
as the Licensor continues to distribute and/or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from any
exception or limitation to the exclusive rights of the rights owners in the Original Work, of
the exhaustion of those rights or of other applicable limitations thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and obligations
imposed on the Licensee. Those obligations are the following:

Attribution right: the Licensee shall keep intact all copyright, patent or trademarks
notices and all notices that refer to the Licence and to the disclaimer of warranties. The
Licensee must include a copy of such notices and a copy of the Licence with every copy of
the Work he/she distributes and/or communicates. The Licensee must cause any Derivative
Work to carry prominent notices stating that the Work has been modified and the date of
modification.

Copyleft clause: If the Licensee distributes or communicates copies of the Original Works
or Derivative Works, this Distribution or Communication will be done under the terms of
this Licence or of a later version of this Licence unless the Original Work is expressly
distributed only under this version of the Licence. The Licensee (becoming Licensor) cannot
offer or impose any additional terms or conditions on the Work or Derivative Work that
alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative Works or
copies thereof based upon both the Original Work and another work licensed under a
Compatible Licence, this Distribution or Communication can be done under the terms of this
Compatible Licence. For the sake of this clause, “Compatible Licence” refers to the licences
listed in the appendix attached to this Licence. Should the Licensee’s obligations under the
Compatible Licence conflict with his/her obligations under this Licence, the obligations of
the Compatible Licence shall prevail.

Provision of Source Code: When distributing and/or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate a
repository where this Source will be easily and freely available for as long as the Licensee
continues to distribute and/or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for reasonable
and customary use in describing the origin of the Work and reproducing the content of the
copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted hereunder is
owned by him/her or licensed to him/her and that he/she has the power and authority to
grant the Licence.

Workshop: Legal aspects of free and open source software
__

 27

Each Contributor warrants that the copyright in the modifications he/she brings to the Work
are owned by him/her or licensed to him/her and that he/she has the power and authority
to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent Contributors grant
You a licence to their contributions to the Work, under the terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous Contributors.
It is not a finished work and may therefore contain defects or “bugs” inherent to this type
of development.

For the above reason, the Work is provided under the Licence on an “as is” basis and
without warranties of any kind concerning the Work, including without limitation
merchantability, fitness for a particular purpose, absence of defects or errors, accuracy,
non-infringement of intellectual property rights other than copyright as stated in Article 6 of
this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition for the grant
of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural persons, the
Licensor will in no event be liable for any direct or indirect, material or moral, damages of
any kind, arising out of the Licence or of the use of the Work, including without limitation,
damages for loss of goodwill, work stoppage, computer failure or malfunction, loss of data
or any commercial damage, even if the Licensor has been advised of the possibility of such
damage. However, the Licensor will be liable under statutory product liability laws as far
such laws apply to the Work.

9. Additional agreements

While distributing the Original Work or Derivative Works, You may choose to conclude an
additional agreement, defining obligations and/or services consistent with this Licence.
However, if accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against such Contributor by the fact You have accepted any
warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon “I agree” placed under
the bottom of a window displaying the text of this Licence or by affirming consent in any
other similar way, in accordance with the rules of applicable law. Clicking on that icon
indicates your clear and irrevocable acceptance of this Licence and all of its terms and
conditions.

Similarly, you irrevocably accept this Licence and all of its terms and conditions by
exercising any rights granted to You by Article 2 of this Licence, such as the use of the
Work, the creation by You of a Derivative Work or the Distribution or Communication by
You of the Work or copies thereof.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 28

11. Information to the public

In case of any Distribution and/or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a remote
location) the distribution channel or media (for example, a website) must at least provide
to the public the information requested by the applicable law regarding the Licensor, the
Licence and the way it may be accessible, concluded, stored and reproduced by the
Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon any breach
by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has received the Work
from the Licensee under the Licence, provided such persons remain in full compliance with
the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete agreement
between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable law, this will not
affect the validity or enforceability of the Licence as a whole. Such provision will be
construed and/or reformed so as necessary to make it valid and enforceable.

The European Commission may publish other linguistic versions and/or new versions of this
Licence and/or updated versions of the Appendix, so far this is required and reasonable,
without reducing the scope of the rights granted by the Licence. New versions of the
Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission, have identical
value. Parties can take advantage of the linguistic version of their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising between the
European Union institutions, bodies, offices or agencies, as a Licensor, and any
Licensee, will be subject to the jurisdiction of the Court of Justice of the European
Union, as laid down in article 272 of the Treaty on the Functioning of the European
Union,

- any litigation arising between other parties and resulting from the interpretation of this
License, will be subject to the exclusive jurisdiction of the competent court where the
Licensor resides or conducts its primary business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State where
the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat, residence or
registered office inside a European Union Member State.

Workshop: Legal aspects of free and open source software
__

 29

Appendix

“Compatible Licences” according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3

- GNU Affero General Public License (AGPL) v. 3

- Open Software License (OSL) v. 2.1, v. 3.0

- Eclipse Public License (EPL) v. 1.0

- Cecill v. 2.0, v. 2.1

- Mozilla Public Licence (MPL) v. 2

- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3

- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-
SA 3.0) for works other than software

- European Union Public Licence (EUPL), any version as from v. 1.1

The European Commission may:

- update this Appendix to later versions of the above licences without producing a new
version of the EUPL.

- extend this Appendix to new licences providing the rights granted in Article 2 of this
Licence and protecting the covered Source Code from exclusive appropriation.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 30

A discussion of the different software licensing regimes
Avv. Carlo Piana, Lawyer

ABSTRACT
Free Software, or Open Source Software, is ubiquitous. Having a minority share in
consumer Personal Computer software, it has the lion's share in virtually all other markets
like smartphones, Internet appliances, and cloud services. This work provides an outline of
the legal aspects of Free Software, explaining how this licensing model can prosper while
subverting a legal environment conceived to achieve its opposite. It also outlines how
different legislations can be detrimental to it (mainly, by extending patent protection to
software).

CONTENT

EXECUTIVE SUMMARY 30

1. HISTORICAL BACKGROUND 32

2. COYPRIGHT, COPYLEFT, COPY-WHAT? A NEW FAMILY OF LICENSES 35

3. SAME LICENSE, MANY “BUSINESS MODELS” 39

4. ARE FREE SOFTWARE LICENSES VALID? WHAT MAKES THEM
ENFORCEABLE? 42

5. INTERACTION WITH OTHER “IP” RIGHTS 44

6. THE CLOUD 47

REFERENCES 49

EXECUTIVE SUMMARY
Free Software,38 also known, or perhaps best known, as “Open Source Software”, is any
kind of Software that, by being distributed under a Free Software License, benefits from
the Four Freedoms:

Freedom #0 to use the software for any purpose;

Freedom #1 to study how the program works, and change it so it does your computing as
you wish (Access to the source code is a precondition for this);

Freedom #2 to redistribute copies so you can help your neighbour;

38 “Free” in “Free Software” has meaning as in “Freedom of speech”, it does not relate to price (as in “Free
Beer”), rather on being unrestricted. This is why, to avoid the ambiguity that the word “free” has in current
English, it is frequently referred to as Free/Libre Software. “Open Source”, conversely, is a more common way
(although more recently coined) of referring to Free Software. Sometimes these naming conventions are mixed
together, such as in “Free and Open Source Software” (FOSS) or even “Free/Libre and Open Source Software”
(FLOSS). I use Free Software in the remainder of this work.

Workshop: Legal aspects of free and open source software
__

 31

Freedom #3 to distribute copies of your modified versions to others. By doing this you can
give the whole community a chance to benefit from your changes. Access to the source
code is a precondition for this.39

Free software is, therefore, a characteristic attached to software distribution by means of a
license. It is, in essence, a legal phenomenon. The word "free" does not relate at all to the
price of software, but to the rights conveyed by the license.

This study makes a comparative analysis of the main features of the different licenses and
aims at providing the general reader with sufficient knowledge to have a workable
understanding of the really complex world of Free (open source) Software licensing. It does
so from a European perspective, although the same concepts and rules can largely apply
world-wide.

It shows how, from a legal perspective, Free Software revolves around licenses, mainly
operating in the copyrighted world. It puts Free Software under a light that differs from
commonly widespread views, which see it as an oddity from a legal perspective. Instead,
Free Software is shown to be – historically – an exception to an exception, the first
exception being the proprietary software and the initial normality being Free Software.
Certainly, proprietary software has "environmental" advantages – from a legal standpoint –
because all the legislation on the legal protection of software revolves around the concept
of “all rights restricted”, so that to sell one copy of proprietary software one does not even
need a legal instrument, whereas to the correct working of Free Software licensing is not
only needed, but usually must also be very complex, detailed and sometimes very strict.
Free Software lives in a “hostile” legal environment, but has proven to be quite resilient,
also legally so, as Chapter 3 shows.

If Chapter 1 provides a historical description of why in mid-'80s the Free Software concept
had to be re-engineered after the rise and domination of proprietary software, Chapter 2
provides the main building blocks of a legal theory of the three main genres of Free
Software, which bring along very different legal consequences: copyleft, weak copyleft, non
copyleft. Copyleft is a totally new concept that uses copyright in a very creative way:
instead of using the restrictions provided by the said legal regime to obtain monetary
compensations in exchange for trading the corresponding permissions, copyleft uses such
restrictions to make sure that the rights granted are not taken back by the recipients; in
other words, what is Free remains Free. Depending on the latitude of the copyleft
conditions, or better, on its scope, very different obligations and conditions are attached to
software distribution, and therefore resilience to proprietarization varies greatly.

The European Union Public License (EUPL) is also discussed in this framework. The
discussion is particularly fit in this chapter because of the particular nature of the EUPL,
which is metamorphic, in a way, given its compatibility clause that implements a concept
commonly referred to as “legal interoperability” - upon which the author remains very
sceptical.

Chapter 3 discusses how Free Software is a multi-dimensional space where one dimension
is independent from all others. The discussion starts from a common mistake, that Free
Software is a development model where the developers work independently and
unorganized, perhaps from their garage, whereas this is just one possible occurrence of the
many different possible conceptual models that can be useful to describe a particular
example of Free Software development. In the same conceptual model (which considers
the degree of sparseness, the control and governance, and the professionality of
development) there are examples covering the whole spectrum, from hobbyists to large
enterprises, from sparse development to very concentrated, or one-entity, development,
and from very loosely coordinated projects to tightly managed ones. Other conceptual
models take into consideration different characteristics, such as whether the software is
backed by business entities or communities of individual developers, or again whether the
software is distributed only as Free Software or there is some proprietary licensing

39 From http://www.gnu.org/philosophy/free-sw.html

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 32

accompanying it (e.g. in the form of dual licensing or “open core”). All of these conceptual
models can be used to form the axes of the multi-dimensional space mentioned above.

To this effect, the Chapter also includes a discussion of dual licensing, where pure Free
Software distribution lives together with proprietary exploitation of the same code – and
consolidated one-entity ownership. Another business model that is discussed is “open
core”, which combines Free and proprietary Software, but in a totally different setting and
without consolidation of copyright title. Another independent axis is considered, linked to
another commonly misunderstood concept: that Free Software is all about community.
Communities are an important part of the Free Software world, but reality is far more
complex.

As mentioned, Chapter 4 answers the question whether – and why – Free Software
licensing is valid and enforceable, and also includes a more in-depth analysis of the liability
regime that comes together with software distribution. Because of the particular conditions
under which Free Software is distributed, the liability regime is very likely to be opposite to
that applicable to proprietary software.

Chapter 5 discusses how copyright is not the only legal area that is relevant to Free
Software. Software is in a peculiar position since it has many different protections and
interactions. The most relevant point in this discussion is the stark contradiction between
Free Software (and software in general) and patents, and how Free Software reacts
against patents. The Chapter also includes a short mention of a particular kind of
standards, namely patent-ridden standards, which are at odds with Free Software,
including some commonly referred to as “open standards” which are not open.

Finally, Free Software is a way of distributing software. But the most outspoken buzzword
nowadays is “Cloud”, and cloud is a form of non distribution of software. But cloud services
as we know them would be virtually impossible, quite ironically, without Free Software. A
short discussion of how this is relevant and what Free Software has conceived to face the
hurdles will also be included.

1. HISTORICAL BACKGROUND
Free Software, or “open source software”,40 dates back to the early days of computer
science, although only relatively recently it has become a subject of public discussion as
such.

At the beginning of the computer industry, there was no point in defining “Free Software”
at all, because software was not a separate subject from the hardware where it ran. Much
of the programming was specifically written for the few computers that existed.41 The main
sectors where software was made were essentially three: military, university, hardware
manufacturing.

Military did not distribute software at all. Software distribution occurred only in the
hardware manufacturing industry, but only in the form of installed software as an accessory
of the “real” computer, and in university.

1.1 The Academic licenses were the first form of Free Software
The first forms of Free Software can be found precisely in university. Academic software
was originally distributed under (implied or express) conditions that allowed redistribution
and modification. The most important of these conditions was to provide an attribution of

40 “Free Software” and “open source software” are two wordings that move from different premises, but for all
practical purposes they can be considered synonyms and they are to be read in this work as strict synonyms.
Please note that Free Software, as well as the term “Free” as in “Free speech” are written capitalized in this paper
as a defined term, so that possible confusions with the homonym “free” which means “at no cost, gratis” are
avoided.
41 For the quite famous quote of the IBM chairman "I think there is a world market for maybe five computers",
although there is no direct evidence that it was ever uttered, see
http://en.wikipedia.org/wiki/Thomas_J._Watson#Famous_misquote

Workshop: Legal aspects of free and open source software
__

 33

the origin of the code, that is to say, to preserve the statement that claims authorship of
the code in all subsequent distribution even of modified versions of it. This practice was not
unlike the practice of citations in scientific works – which software was considered to be. It
was commonplace to have these conditions spelled out in a text that accompanied the
software distribution, or “the license”. Universities used a standardized form of this license,
which usually took the name of the University itself. The most known and used licenses
were those coming from Berkeley (“BSD” = Berkeley Software Distribution) and from the
Massachusetts Institute of Technology (“MIT”).

This form of Free Software distribution is therefore often referred to as “Academic
licensing”, or “Attribution only”.

1.2 Enter the Independent software vendors
Military, academic and hardware industry did not rely on any particular form of protection
for the software that they made. Military simply did not distribute it. For the hardware
industry software, it was just a necessary complement to their main product and there was
little incentive to copy software that had to be drastically changed in order to run on other
hardware. Academics freely distributed their software; their main concern was avoiding
plagiarism and being acknowledged for the quality of what they wrote: they were seeking
recognition.

But increasingly over the time software became disentangled from the hardware that it
targeted. The operating system Unix42 was an important part of this process, as it had a
kernel that was designed to run the basic interaction with the hardware and a “user space”
where applications could run and – to a large extent – be independent from the underlying
hardware. This was also due to a fundamental advancement in the software programming
techniques, with the creation of the C programming language by Dennis Ritchie,43 to which
Unix was ported as early as 1972.44

Thanks to these advancements – as well as to more performing hardware at lower prices
where the overhead necessary to this abstraction of software from the hardware could be
accommodated – industry specialization increased, and manufacturers that were
concentrating only on software making were a natural evolution. This was the Independent
Software Vendors (ISV) industry.

With independence and abstraction, as well as complexity and value of software, came the
need to “protect” the investment in producing good software and to avoid that others
(including the hardware makers who contracted out software to ISVs) could have a free run
on this work. This protection was conceivably obtained through three different tools:

 secrecy;

 hardware keys or other form of technical protection;

 legal protection.

Hardware keys are not relevant to our discussion. It is a form of encryption of software that
needs a hardware device of sort to run, so that copying the software is useless if the
hardware device is not also obtained.

Secrecy and legal protection are far more relevant, and will be discussed in the next
chapter.

42 UNIX is an alteration of the acronym UNICS, or UNiplexed Information and Computing Service. Hereinafter the
common uncapitalized form “Unix” will be used. Unix is an operating system, that is, the part of a computer's
software that provides the most basic functions used by more specialized software applications, roughly speaking
taking care of the interactions with the hardware. For instance, an operating system checks the hardware
environment, manages storage devices, collects the inputs of the user and provides the output to the user (e.g.,
through a monitor), connects with other computers through network interfaces, recognizes and manages devices,
authenticates users and allows them to perform their permitted actions, etcetera.
43 http://en.wikipedia.org/wiki/C_%28programming_language%29
44 See http://en.wikipedia.org/wiki/Unix#1970s. For a more detailed recount of why UNIX is relevant to Free
Software, see Meeker H.J., The Open Source Alternative, Wiley, New Jersey, USA, pp. 4-5

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 34

1.3 Source code, machine code and reverse engineering
The “traditional” way of making software, the paradigm of which can be seen in the C
programming, is that the programmer uses some sort of programming language which, to
an uneducated eye, would look like a mixture of English and mathematics notations, which
is called “source code”. Source code is “human readable” code, in other words, an expert
human being is able to read it and tell what the code is supposed to do. But this code
cannot be used by computers, because the instructions that a computer needs are really
much different, as computer need instructions in “machine code” or “executable form”.
The translation of source code into machine code is called “compilation” and the
application that makes this machine code is called “compiler”.

Machine code, unlike source code, would look like a series of hexadecimal characters (from
0 to 9 and from a to f) without an apparent structure or meaning. Machine code is not
human-readable. In other words, it is completely opaque to the human being, but it is
not so to a computer.

Therefore the ISV found it natural not to distribute the source code, so that any
modification would need their intervention, or access to source code. Possession of source
code in the common parlance is a proxy for “ownership” of the code, although legally
speaking this is not true. In this way, ISV relied on secrecy to preserve their commercial
power.

It is technically possible to obtain a close equivalent of the source code through reverse
engineering techniques that are referred to as “decompilation” (the opposite of
“compilation”). This practice was quite early considered illegal, a form of industrial
espionage. Therefore secrecy also provides some sort of legal protection.

This way of protection (that is, hardware protection) cannot do anything against a one-to-
one copy, i.e., against making an identical copy of the machine code that would run on an
identical or compatible computer. With increasingly lower cost of copying, that practice
became very convenient and ISVs felt they needed some protection against it. Leaving
aside hardware protection or other technical anti-copying means, the only way was to have
legal protection.

1.4 Legal protection: copyright
The initial debate as to what form of legal protection was to be given to software, if any,
converged very soon and naturally towards copyright, both due to the nature of software
(which is originally a work of writing) and to the need to protect it mainly against copying
rather than against imitating. Another advantage of using copyright as a legal device to
protect software was that copyright is universally protected under the Berne Convention
that establishes a world-wide Copyright Union within which a copyrighted subject is
uniformly and automatically protected by all the member states of the union.

The other options, such as using patents or some sort of sui generis rights, were
considered impractical. In Europe, protection of software as a copyright subject was
eventually harmonized through the Software Directive.45

1.5 The rise of proprietary and the re-birth of Free Software,
thanks to a printer

ISVs could therefore benefit from a sound legal and technical environment. The
commoditization of the PC platform made the software industry as relevant – if not more
relevant - as the hardware industry. Software became a tradable object, a commercial
product that, thanks to the protections granted to it, was made artificially scarce and
therefore could have a price tag. Software and all copies thereof became a property that
could be sold. Thus the name “proprietary”, which is used to define software protected
and treated as property.

45 Directive 91/250/EEC, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:HTML

Workshop: Legal aspects of free and open source software
__

 35

The short and ultra-simplified history above shows that proprietary software is a relatively
new economic paradigm in software production. It became very popular for a number of
reasons, and it became in the common perception the way that software was made. Some
disagreed that this success was deserved or that such a paradigm was the only, or the
best, way to make software. One of the most famous critics was Richard M. Stallman.

Stallman was a young programmer and researcher at MIT in the early eighties. To him,
acquainted with the academic way of making and sharing software, what happened one day
with a printer was quite a shocking finding.46

The department where Stallman was working shared a networked printer. They used it to
print sometimes long documents. The printer was frequently jammed, but because the jobs
were long and the printer distant from the working space, it could happen that Stallman
went to collect his batch only to discover that the job was delayed by someone who
launched another one before without checking its result. A lot of delay ensued. Stallman
reworked the source code of the printing software so that instead of just triggering a visual
signal, a network message was sent to the owner of the job, who could timely go to the
printer and remove the jam.

When a new ultra-fast networked laser printer was donated, Stallman thought he could do
the same modifications, but to his disbelief he was not able to find the new source code.
Believing it was a mistake, he asked for it to the developers who wrote the software, only
to find that it was not an error, but a protection of the copyright of the manufacturer and
that there was no chance to restore the previous functionality added by Stallman.

Stallman took it rather personally and decided that he would never tolerate this nonsensical
prohibition against his efforts to improve the software and benefit his peers. He decided to
start a new initiative, which later became the Free Software Foundation, to build an entirely
new operating system and applications that run on it, all released as Free Software. The
operating system was called GNU.47 When in 1991 Linus Torvalds published Linux, a Unix
kernel (the lowest level of functions of an operating system) for the i386 platform – and
decided to change its license to the GNU GPL, the license under which GNU was released –
GNU and Linux could be combined to make GNU/Linux, the operating system now
commonly known with the “Linux” name.

Why this second wave of Free Software was different from the first, academic, one will be
the argument of the following chapter.

2. COYPRIGHT, COPYLEFT, COPY-WHAT? A NEW FAMILY

OF LICENSES
Software is protected by copyright. It is also protected by secret, when the corresponding
source code is not distributed. This was the situation that Stallman faced. He was not
allowed to change the code that controlled “his” printer, because he was lacking the legal
rights (copyright also prohibits modifications of the protected work without the permission
of the rightsholder). He was also unable to change it, since he lacked the technical means
to do it, that is, he lacked the source code.

The goal of the Free Software Foundation is to remove these two obstacles for all the
recipients of the software. Therefore the four fundamental Freedoms were conceived:

Freedom #0 to use the software for any purpose

Freedom #1 to study how the program works, and change it so it does your computing as
you wish. Access to the source code is a precondition for this;

Freedom #2 to redistribute copies so you can help your neighbour;

46 The whole story is narrated by Sam Williams, Free as in Freedom. Richard Stallman's Crusade for Free
Software, March 2002. The text is available at http://oreilly.com/openbook/freedom/ch01.html
47 GNU is a recursive acronym “GNU's Not Unix”. Indeed GNU is a rewriting from scratch of a UNIX operating
system.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 36

Freedom #3 to distribute copies of your modified versions to others. By doing this you can
give the whole community a chance to benefit from your changes. Access to the source
code is a precondition for this.48

One problem was that these freedoms already applied to the first wave of Free Software.
This did not prevent the proprietarization of much of the academic software and the birth of
a large number of reciprocally incompatible versions of Unix, which initially was freely
distributed and modified thanks to a very liberal grant by AT&T Bell Laboratories. In order
for the new Unix and all Free Software to be a “commons” and more importantly to remain
a commons, a simple device was conceived. The permission that accompanied the
software was not unlimited and virtually unconditioned as with the academic licenses. The
permission was granted under stricter conditions, all aimed at making sure that the
software so released could not be turned into, or used within, proprietary software.

The license was called the GNU General Public License, or GPL.

In a way, this was a “hacking” of the copyright system. Instead of using the exclusionary
rights that copyright automatically grants to the copyright holder to make it a scarce good,
thus allowing to charge a price for obtaining it, copyright was used for the reverse effect, to
maintain software as Free and unencumbered as possible. Because in English the contrary
of “right” is “left”, and “left” is a past form of “to leave”, someone coined the term
“copyleft”. “Copyleft” is now common parlance in Free Software licensing, a well
understood term of the trade.

2.1 Strong copyleft, weak copyleft and non copyleft are the three
most relevant categories of Free Software licenses

Software is not built in isolation: reuse of common features, snippets, libraries is a rule.
Free Software is no exception, rather the contrary. If software is released under “liberal”
licenses, which do not contain copyleft conditions, software can be reused at will within and
by software project under any license, and the product of this combination can also be
licensed under any license, including a proprietary one. Because this is precisely what a
copyleft license does not allow to happen, the concept of incompatibility must be
introduced, as well as that of “derivative work”.

In a nutshell, if one takes a bit of software and changes it, the modified software is a
“derivative” of the former, meaning that it is a new work under the copyright of the last
author, but this last copyright holder must obtain the permission from the former copyright
holder not to infringe their rights. In the chain of development of software the original
version is found earlier in the flow of changes, and therefore is called “upstream”, and the
further modifications are “downstream”. In the Free Software world there is no need to
have a direct interaction between the upstream and the downstream developer, the related
permissions being granted once for all by the public license. The downstream developer
only needs to know what license is applied to the software and what conditions are imposed
by it. This is called the “inbound” license. The inbound license dictates the licensing choice
of the downstream developer, or the “outbound” license.

The outbound license needs not be the same of the inbound, but at the same time the
outbound software distribution must be made in compliance with the inbound license. In
other words, one may combine software and distribute such combination only when the
inbound license is the same or is compatible with the outbound. As a rule, the
outbound license must be at least as strict as the inbound, or more, otherwise it would not
respect the conditions of the latter. This is why a more relaxed license is likely to be
compatible with a stricter one, but the reverse is not true, unless special arrangements are
made. Using the best naming convention (the first mentioned license is the inbound
license, the second is the outbound):

 no copyleft can be compatible with both weak and strong copyleft (and even with
proprietary);

48 http://www.gnu.org/philosophy/free-sw.html

Workshop: Legal aspects of free and open source software
__

 37

 weak copyleft is compatible with strong copyleft, and with proprietary and non
copyleft only to some extent;

 strong copyleft is not compatible with weak copyleft, with no copyleft and with
proprietary software outbound licenses. Moreover, different strong copyleft regimes are
almost assuredly incompatible with each other.49

It is time to define what weak and strong copyleft mean.

The model described at the beginning of this paragraph is a very simplified model, the
reality is far more complex. Instead of rewriting each and all of the very basic functions
that are almost invariably found in a program (like opening a file, saving a file, displaying
an error message, etc.), programmers reuse libraries of software, concentrating only on
the central part of programming.50 A library licensed under the GPL would trigger copyleft
over the work in which it is used. Developers, including the FSF when it first started
releasing the libraries of the GNU C Compiler (gcc) or the GNU C libraries, or glibc, felt that
this was too far reaching. They were confronted with the need to produce libraries that
could be included in any kind of outbound-licensed software. Therefore a special license for
libraries was conceived, the Library GNU Public License, or LGPL. The LGPL differs from
the GPL because the scope of its copyleft is limited to the library itself, not to the entire
software which results from the inclusion of the library, or “the larger work”. In other
words, instead of covering all the derivative work, the copyleft effect only covers the
modifications to the original work. Because of the diminished effect of the copyleft
provisions, the LGPL was renamed as “Lesser GPL”. This lessened copyleft effect is
commonly referred to as weak copyleft. The full copyleft is referred to as “strong
copyleft”.

2.2 How many licenses are there? The proliferation issue
So far a very limited number of licenses have been described: the BSD/MIT in the non
copyleft area, the LGPL in the weak copyleft area and the GPL in the strong copyleft area.
Other projects have created their own licenses, all of which roughly can be put under the
three categories of Free Software, as outlined earlier.

The most popular ones are probably:

 the Mozilla Public License, used and “stewarded” by the Mozilla Foundation, the
entity behind Firefox and many other projects; it is a weak copyleft license.

 the Apache Public License, used and stewarded by the Apache Foundation, the entity
behind the Apache web server; it is a non copyleft license.

These licenses cover the large majority of software out there. But there is a very long tail
of other licenses, frequently project-specific and seldom used outside their namesake
projects.

The Open Source Initiative (OSI),51 the organization which collects a list of licenses
compatible with the “Open Source Definition”,52 lists roughly 70 approved licenses, but the
full list of used licenses is easily one order of magnitude longer.

This phenomenon is often referred to as “proliferation”. Proliferation is considered a
problem for Free Software due to its three main consequences:

49 See further below for a more detailed discussion of this point.
50 In C programming, the most paradigmatic example, all these libraries are called upon at compiling time and
produce different software objects, that are linked together and written in a big executable file (statically linked)
or made available alongside the executable file as “dynamically loadable” libraries that are linked when needed by
the operating system when they are needed at execution time (dynamically linked). This is a source of
complication as to whether using a dynamically linked library creates a derivative of said library, but the
discussion of how this works in practice is very sophisticated and exceeds the purposes of this paper, also because
it is a source of disagreement between experts in the field.
51 http://opensource.org
52 The Open Source Definition is a list of ten characteristics that must be present in a license to qualify as “open
source”. Operatively, this list can safely be considered equivalent to the four freedoms of Free Software.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 38

 Incompatibility. With more licenses and more licensing conditions, the odds of
software released under legally incompatible licensing conditions increases
exponentially. This reduces the chances to reuse software in the commons, by creating
reciprocally incompatible commons.

 Uncertainty. More licenses means less chances that the scrutiny of the courts validate
the working of a particular license. Moreover, while the most used licenses undergo the
analysis of legal experts and very detailed discussions amongst them as to what is the
scope, validity, meaning of their language, often even before their official release, the
seldom used ones are more likely to be totally untested.

 Confusion, increased transaction costs. Free Software is supposed to reduce
“friction” in sharing and reusing software. The more licenses are relevant to a given
project, the more it is difficult to assess whether said project complies with the
conditions of each and every license, or to predict the legal outcome of combining
different software.

It is apparent from the above discussion that any decision to create a new license, instead
of using one of the most popular and thoroughly tested, needs to be taken with due care,
because the advantages of creating something that is (in the eye of the drafter) perfected
is easily outweighed by the systemic disadvantages of creating yet a new license.

2.3 The case of EUPL, relicensing permissions and the exceptions
In this light, I have been very sceptical about the decision of the EU authorities to create a
new license, namely, the EUPL.53 On the one hand, I understand the rationale behind it, on
the other hand, it suffers from the same disadvantages discussed above in terms of
proliferation. Moreover, being a purportedly strong copyleft license, it would be outright
(and both ways) incompatible with the most widely used copyleft license, the GNU GPL, and
very likely incompatible with many others. This was well understood by the drafters, who
decided to use a clever solution to avoid the EUPL being cut off from software development
in combination with a large share of the software publicly available.

The EUPL adopts an express compatibility list. This overrules some compatibility
problems by allowing a larger work containing EUPL code to be “relicensed” under another,
otherwise incompatible, license. In other words, the EUPL recedes in front of incompatible
licenses, by allowing the incompatible license to become the outbound license of the larger
work. In all practical terms, while this can be regarded as a workable solution, the
possibility to relicense the software means that the legal conditions actually applied by the
downstream developers can be different, and less protective, than those expected. For
instance, among the compatible licenses listed in the Annex to version 1.1 of the EUPL
there are weak copyleft licenses, like the Eclipse Public License,54 or non copyleft licenses
like the Open Software License.55

In a way, the compatibility list makes software licensed under the EUPL multi-licensed. This
is not per se something to be rejected, as long as the consequences of this being multi-
licensed are well understood and predictable. For instance, the GNU GPL has the option to
include a clause “or any later version”. If this clause is added, then the recipient of the
software can, without asking a permission from the upstream copyright holder, relicense
the software under a newer version of the same license which has been issued by the
official steward of it (so far the Free Software Foundation), as it happened with the
publication of version 3.0. The same possibility is given by the Mozilla Public License.56 The
difference between these cases and that of EUPL is that the "any later version" clause only
applies to later versions that follow the same strong copyleft regime. When it comes to the
EUPL, however, its compatibility list makes it possible for software licensed under a strong
copyleft regime (i.e. under the EUPL) to become subjected to weak copyleft, or even to
non-copyleft. It is reasonable to assume that if copyright holders choose a copyleft license,

53 EUPL stands for “European Union Public License” http://joinup.ec.europa.eu/software/page/eupl
54 http://www.eclipse.org/legal/epl-v10.html
55 http://opensource.org/licenses/OSL-3.0
56 http://www.mozilla.org/MPL/2.0/ See Section 10

Workshop: Legal aspects of free and open source software
__

 39

and the more so if they choose a strong copyleft one, such as the EUPL is supposed to be,
they want to exert control on the legal conditions of their software when it is included into
other software. By leaving a backdoor open that allows the software to be relicensed under
a license of different nature, the expectations of the copyright holder are somewhat
“betrayed”.

Another way to introduce compatibility with other software, where compatibility does not
exist, is to use exceptions. An exception is an added condition that lessens the copyleft
effect of (most frequently) strong copyleft licenses, to make them compatible with certain
other licenses. One of the most used exceptions is the linking exception. As reported
above, linking is a widely used form to include libraries into larger works without
commingling software, keeping some level of separation at least at source code level. A
linking exception would permit to link software licensed under two incompatible licenses
and to distribute the resulting larger work under the conditions of the other linked software.
Adding a linking exception is obviously permitted only if the decision is taken by the
copyright holder(s) of the entirety of the concerned software, and it is akin to adopting a
weak copyleft license. Indeed, the GNU LGPL v.3 is now construed as an exception to the
GNU GPL v.3 license. The GNU GPL v.3 actually includes a framework to allow adding
exceptions, which can be more restrictive than those of the “vanilla57 GPL” (in certain and
limited cases) or more liberal. In case more liberal exceptions are added, it is optional to
the downstream recipient to remove them and to distribute their works under the original
version of the GPL.58

In conclusion, when a project is reported as being licensed under a given license, in order
to identify the legal regime that actually applies to it one must consider at least whether:

 The license adopts a compatibility list or the software is dual- or multi-licensed;

 The license and/or the copyright holder allows relicensing under certain circumstances
(for instance: it is permitted to relicense the software under a newer version);

 Additional permissions, or exceptions, apply.

3. SAME LICENSE, MANY “BUSINESS MODELS”
Discussing commercial exploitation and monetization (if any) of Free Software and/or how
software development is financed is outside the scope of this work. However, some
discussion about the social and economic environment where Free Software is made is
useful, in the light of the additional legal effects involved in following certain models as
opposed to others.

In reality, under the general heading of “Free Software” or “Open Source Software”, the
matrix of combinations of different characteristics can be very complex. We just mention
the most relevant axes in this multi-dimensional space.

3.1 Cathedral against the Bazaar (very few or only one vs. many
developers)

A frequent misconception of those who approach Free (or open source) Software for the
first time is to believe that it is a way to allow distributed creation of software by many
different developers that work in an unorganized, chaotic way, maybe in their garage, to
produce something that is half backed, incomplete and inherently difficult to use.

Contrary to that, development of Free Software is not necessarily different from
development of software licensed under proprietary conditions. The fact that certain
software is Free Software simply allows many more degrees of freedom and choice. Choice
creates many different approaches.

57 “Vanilla” is Computer Sciences jargon and means “original as it came from the source, untouched”. The Oxford
English Dictionary accounts it as “having no special or extra features; ordinary or standard”.
http://oxforddictionaries.com/definition/english/vanilla?region=uk&q=vanilla
58 See the GNU GPL v.3, Section 7 at http://www.gnu.org/licenses/gpl.html

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 40

Perhaps the first discussion of one of these choices has been made by Eric S. Raymond in
his work “The Cathedral and the Bazaar. Musings on Linux and Open Source by an
Accidental Revolutionary”.59 In this essay, Raymond analyses the differences between the
centralized, rigid and structurally coherent development of GNU, Emacs and GCC by the
Free Software Foundation, and the more fast-paced, loosely engineered, and chaotic
development of Linux. The two models are indeed at the extreme and both are – judging
by the results – quite functional and successful.

One of the differences between the cathedral and the bazaar models is how copyright is
dispersed (in the case of the bazaar) or whether it is kept by a relatively close number of
holders, because contributors are also a small number. Bringing the concept further,
consolidation of copyright into a single entity is also a possibility. This can be done by not
allowing others but the original copyright holder to contribute, or through assignment.

Indeed, the Free Software Foundation strongly urges the assignment of all the code
committed to the GNU project to itself so that there is ideally only one entity legally
entrusted with the management of copyright.60 This can be advisable (provided that the
assignee deserves a high degree of trust) for a number of reasons, one of which being the
possibility to take fundamental decisions as to management of copyright, such as adopting
a new license or using the ownership of the software as a title to proceed in court against
trespassers.

The possibility of taking (or keeping) tight control of the entirety of the software in a
project by retaining copyright ownership has been used in different circumstances to
achieve models which can be considered hybrid between proprietary and Free Software, as
it is the case with dual licensing and “open core” strategies, which will be discussed in the
next two chapters.

3.2 Dual licensing
“Dual licensing” (or “multi-licensing”) is a licensing model where software is distributed
under more than one license at a time. We have seen how this can happen in order to
overcome potential incompatibilities in linking or mixing software. However, using dual
licensing as a way to monetize Free Software has peculiar consequences. Dual licensing
under a Free Software (most frequently a strong copyleft) license and under a proprietary
license is one of the options.

The rationale behind dual licensing is that if software is licensed under a strong copyleft
license – therefore a license that does not allow proprietary exploitation of the derivatives –
albeit being free (at no cost), its use would bear conditions that could be unacceptable to
certain potential downstream developers. These developers, for instance, might want to
utilize the copylefted software in their derivative software in a proprietary way. In order to
be permitted to do so, they need to be released from the copyleft conditions and therefore
they can be in a position to pay a monetary price for this privilege. This can be described as
“buying an exception” to copyleft.

The more burdensome and far reaching the conditions are – and the more valuable the
software is – the higher will be the incentive for seeking the exception. Since in order to
grant an exception the licensor must control the entire copyright of the software, there is a
high chance that this will only be possible in the case of a “silos” development model,
where everything is made internally by the licensing entity or contracted by it, and such
entity therefore holds the entire copyright of the software.

Yet the licensing, even in this concentrated development model, creates two interesting
additional side effects compared to an equivalent proprietary development, from the point
of view of recipients, as a result of two characteristics of the Free license, namely that:

 software can be “forked”

59 http://www.catb.org/~esr/writings/cathedral-bazaar/
60 http://www.gnu.org/licenses/why-assign.html

Workshop: Legal aspects of free and open source software
__

 41

 software can be inspected, modified and adapted to the customer's needs without
asking permission to the licensor.

The fact that software can be forked means that downstream recipients could decide that
they can take over the development of the same solution and continue its development and
distribution only relying on the inbound license. This alone creates a game where there is a
certain assurance that development will be continued even against the will of the copyright
holder, or in case this latter is unable or uninterested in bringing it forward. This removes
some of the uncertainties that always exist around proprietary products, including that they
can become “orphans” or that they can follow undesirable development paths. Indeed some
of the largest dual licensed software projects have been forked over concerns as to the
stewardship of their copyright holder: Libreoffice has been forked from Openoffice.org
(formerly owned by Sun Micrososystems, which was taken over by Oracle Corp; presently
the stewardship is with the Apache Foundation) and MariaDB was forked from MySQL (the
most successful Free Software database application and one of the most successful
databases at all) by Monty Widenius, its original creator. Forking is indeed one of the most
important (and feared, by the leaders of the projects) safety measure against misconduct
or simply a rather drastic way to resolve disagreements.

The second aspect, the freedom to modify the software and adapt it to the user's needs, is
also interesting. Besides allowing anybody who receives the software to perform an
independent inspection, this freedom encourages sufficiently literate users to fix bugs by
providing patches, or even producing drivers and other tools. Because these modifications
can be “broken” by changes in subsequent versions, it is highly efficient that these
modifications are given upstream to the copyright holder, so that they are included in the
development and maintained over new versions.

This can only be done in two ways: by assigning the copyright of the modification, or by
releasing the patch/additional software under ultra-liberal conditions, so that they can be
included in both the Free and the proprietary version of the mainstream application without
depending on the conditions imposed by the contributor.

Although it is not necessarily so, it does not seem that more important contributions than
patches and bug fixes are ever given to dual licensed projects. In fact, it is very hard to
find dual licensed projects that receive substantial contributions, so that the development
of those projects hardly leaves the shoulder of the main copyright holder.

3.3 Open Core (Free core platform or infrastructure, proprietary
outer layers)

On the opposite side there seems to be something that is regarded as increasingly popular,
which is open core. If in the dual licensing model the bulk of the software is kept and
maintained by one single entity, and something comes from third parties only at the edges,
in open core the fundamental technology is released freely, and the proprietary part
happens at the edges. In other words, there is an attempt to build a shared infrastructure
(“the core”) with differentiation and added value only occurring on the outer layers, or
the actual implementations based on the common infrastructure, akin to standardization.

There are examples where a common shared infrastructure is made by many independent
companies and/or communities of developers under very liberal, non copyleft conditions.
PostgreSQL (an increasingly popular database application) is an example: it is licensed
under the BSD license, which allows any company to sell an entirely proprietary application
based on it. Sometimes the common infrastructure is conversely kept under very strong
copyleft conditions, to avoid that any forks are taken away from common development, and
only the “outer layer” is distributed as proprietary add-ons.

Linux can roughly fall under this category, as it is used both in the GNU/Linux incarnation
(for the PC systems, in desktops and servers) and as the foundation of proprietary
solutions built on the top of it; the most widely known is perhaps Google's Android, mainly
used to run smartphones and tablets. Android is interesting also because it creates a
middle layer of software released under very liberal condition (similar to the Apache

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 42

license) that can be taken by all vendors to make their own tight-controlled versions,
bundled with their own hardware.

3.4 Community vs. company controlled development
The above examples show how proprietary exploitation and one-company development are
not necessarily tied together. On the one extreme, FSF has strong control over GNU, but
absolutely no proprietary exploitation. On the other extreme there is large proprietary
exploitation through selling of copies of software with a project run under very liberal and
non centralized ways in PostgreSQL. On yet another axis, we have bazaar-like development
of software under strong copyleft conditions (Linux is one example, KDE is another), and
one-company-controlled development of software under very liberal conditions (in the case
of Android).

Then again, it is possible to have consolidation of copyright into a single entity while
retaining a bazaar-like development model. KDE is such an example,61 where developers
are at least invited to provide an assignment to KDE e.V., through the “Fiduciary
Licensing Agreement” (or FLA)62 which is a legal instrument developed by the Free
Software Foundation Europe, and whose aim is to centralize copyright title while preserving
the distributed nature of copyright interest – and the nature of Free Software of the code
whose copyright is assigned. In a FLA the individual assigners are the “beneficiaries”,
whereas the assignee, who receives a title in the software, acts as a trustee of the
beneficiaries.

4. ARE FREE SOFTWARE LICENSES VALID? WHAT MAKES

THEM ENFORCEABLE?
The question of the validity and enforceability of Free Software licenses is not contested
anymore. The issue has been raised several times and addressed in multiple courts which
ruled in favour of enforceability of free software licenses. As a license is frequently
considered as an agreement, contractual laws of various countries can work against it, on
many grounds, like formal deficiencies, lack of consideration, consumer protection,
language preservation laws.

But are licenses “contracts”?

Let us start from what the most famous family of Free Software licenses say. The GNU
licenses have a very telling section commonly referred to as “not a contract”. The drafters
had the issue of different contract laws very clear, and decided not to rely on any particular
contract law in order to preserve the validity and enforceability of the license. Instead, they
relied on the uniform law provided by copyright treaties, mainly the Berne Convention.63
Those treaties grant a minimum set of protection to copyright holders, among which are
the rights to exclude others from use, copy, distribution, modification of software. Were the
license absent or invalid, no right would be transferred. If recipients of the software were to
contest the validity of the license, they would automatically plead the fact that they are
infringers of the copyright of all copyright holders.

Most of the licenses provide a set of conditions, rather than obligations. This makes any
contractual qualification of the license redundant,64 as the license can very well work as a

61 KDE stands for K Desktop Environment. It is one of the most popular desktop environments for GNU/Linux. A
Desktop Environment is the part of the operating system that provides its Graphical User Interface (GUI),
including the windows within which applications are displayed, their decorations, the “desktop” where icons
representing various objects reside, and a number of applications, tools, snippets, utilities, configurations etc. that
assist the user in interacting with the computer's operating system. KDE also provide an integrated suite of
applications that are particularly designed to be executed in the KDE environment, such as personal and office
productivity applications, an email client, a web browsers and many other utilities. http://kde.org
62 http://ev.kde.org/rules/fla.php.
63 See, for a clear an concise explanation, Eben Moglen, Free Software Matters: Enforcing the GPL, I
http://moglen.law.columbia.edu/publications/lu-12.html
64 As I already maintained in one of the first articles in Italy on that matter: Carlo Piana, Licenze pubbliche di
software e contratto, in I contratti, n. 7/2006, IPSOA; available at http://www.piana.eu/repository/720_727.pdf

Workshop: Legal aspects of free and open source software
__

 43

“bare copyright license”. Licenses do not require licensees to do anything. They provide a
set of conditions: only fulfilling all of them gives the licensee the right to use, modify, copy,
distribute, etc., the software.

In the United States a landmark case from the Court of Appeal for the Federal Circuit
gave the same interpretation, allowing injunctive relief in a case of violation of a Free
Software license, in Jacobsen v. Katzer.65 In Europe German courts followed the same line
of arguments in several cases raised by gpl-violations.org, despite following the contractual
line in the first place.66

If anything, the stricter the license is, the more evident is the intention of the copyright
holder to retain control of the software, as opposed to letting it fall in a “public domain”.
Therefore, copyleft conditions strengthen the license and provide more ground for its
enforcement.

4.1 In particular: the liability regime and exclusion
Typically, FOSS licenses contain very strong disclaimer clauses, which discharge the
author from all liability.67 The reason for this is that FOSS is often made available without
any monetary compensation of any sort, as a result of which the author generates
insufficient income to pay for liability insurances and legal costs.68

Should the disclaimer be ineffective, could a software developer be liable for damages
caused by his or her software, in the light of the fact that his or her software is released for
free (under the Free Software license)? Apart from the cases of gross negligence and
intentional acts, or a liability in tort (such as releasing malicious software), the answer
seems to be negative in most cases. It is quite hard to construe a contractual liability only
based on the FOSS licensing. In a typical software license there is no obligation to deliver,
just conditions for use. Should a downstream recipient wish to integrate the software in a
larger product for a particular purpose, and the software be unfit to said purpose, it would
be upon the integrator – who is permitted to make all the modifications needed, including
the adaptations and quality assurance activities – to make sure that the combination
works.

There is a considerable difference between this case and a proprietary software license. In
proprietary software licensing, consideration is exchanged against the delivery of software
or even just against permission to use said software, which is to be qualified a sale.69 As a
sale, it bears certain statutory warranties, including that the product is free from defects
that reduce its intended use. The same cannot apply to FOSS, which is not "sold", but just
offered to public use. If there is a separate agreement, such as a software development
agreement, the relationship between the client and the developer – in particular the liability
for defective software – is governed by this specific contract and not by the license.

The above conclusion is true when the contractual relationship between the upstream and
the downstream parties in the transaction is the license alone. It might well be the case
that separate agreements (like a software adaptation contract or a maintenance
agreement, or even a sale of a device containing software to an end user) are in place, in
which cases contractual liability rules would apply to that part of the relationship.

65 Lawrence Rosen, Bad facts make good law: the Jacobsen case and Open Source, IFOSS L. Rev., 1(1), pp 27 –
32. Available at http://www.ifosslr.org/ifosslr/article/view/5
66 Landsgericht Frankfurt, Case 224/06 www.jbb.de/urteil_lg_frankfurt_gpl.pdf An English translation is available
at http://www.jbb.de/judgment_dc_frankfurt_gpl.pdf
67 See e.g., the BSD license (http://www.opensource.org/licenses/bsd-license):
 "THIS SOFTWARE IS PROVIDED BY <copyright holder> ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."
68 B. PERENS, "The Open Source Definition", Open Sources: Voices from the Open Source Revolution,
http://perens.com/OSD.html
69 Cfr. European Court of Justice, case C-128/11 UsedSoft v. Oracle, par. 44-72

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 44

Liability for lack of title is also a possibility. The releasing of software as Free Software by
an upstream provider could have been relied upon by a downstream recipient. If there is a
hole in this chain of title (e.g. in case one developer has taken software without complying
with the licensing conditions of it), this could result in the lower end of the chain being
damaged, e.g. because of resulting litigation. Can this distributor of software demand to be
indemnified by its upstream software provider who has "obfuscated" the real status of the
copyright title of that particular piece of code? Such indemnification is hard to construe
because there is no contractual link between the party requesting indemnification and its
upstream provider. What remains, in the absence of express warranties and representation,
is non-contractual liability. Certainly the licenses have no warranties and representation,
rather the contrary. Due diligence, in this case, seems to be the only protection one has. In
fact, there is a growing business for consulting companies which also offer various kinds of
automated source code (and sometimes also object code) checking tools and who maintain
a large database of referenced code. SPDX statements70 or other licensing meta-
information can be used to this effect.

Finally, liability could be claimed on tort. It is reasonable to believe that a principle of
“caveat emptor” (for want of a better wording describing a principle that would place the
risks on the recipient of software) in a Free Software distribution could also be held to
apply. Therefore, only the final user who receives software as a part of a device or of a
software distribution could be in a position to claim damages should the software be
defective, and only vis-à-vis the party who has compiled the code. The chain of liability
would end pretty soon, as the code is “inspectionable” – unlike what happens in a
proprietary setting. This chain would be interrupted as soon as a provider has had a chance
to inspect the code to verify its malfunctioning.

The only generally applicable limit to liability disclaimers contained in a Free Software
license seems to be found, in Europe, at least, in consumer protection law (which puts
strong limits to the effectiveness of liability disclaimer in consumer agreements)71, then
again, this should be considered in the light of the particular licensing of the software.

5. INTERACTION WITH OTHER “IP” RIGHTS
Free Software licensing heavily relies on copyright, but it would be plainly wrong to say that
licenses are just copyright licenses. The rights that are received by the users/recipients go
well beyond copyright. At the same time, other rightsholders – sometimes unrelated to the
actual development of the software – can claim rights that could interfere with the free
working of the licenses and contradict the freedoms that they can ensure.

5.1 Patents
Art. 52.2 (c) and 52.3 of the European Patent Convention72 seem to exclude software from
the subject matters that can be patented. However, the constant practice of the European
Patent Office and of some of the Member States' patenting offices has been in stark
contrast with the letter of the Convention, so that there exist patents that read on pure

70 “The Software Package Data Exchange® (SPDX®) specification is a standard format for communicating the
components, licenses and copyrights associated with a software package”. See https://spdx.org for more
information.
71 For instance, implementation of the Directive 93/13/EEC of 5 April 1993 on unfair terms in consumer contracts
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31993L0013:EN:HTML.
72 “Article 52 - Patentable inventions.
 (1) European patents shall be granted for any inventions, in all fields of technology, provided that
they are new, involve an inventive step and are susceptible of industrial application.
 (2) The following in particular shall not be regarded as inventions within the meaning of paragraph 1:
 [...]
 (c) schemes, rules and methods for performing mental acts, playing games or doing business, and
programs for computers;
 [...]
 (3) Paragraph 2 shall exclude the patentability of the subject-matter or activities referred to therein
only to the extent to which a European patent application or European patent relates to such subject-matter or
activities as such.”

Workshop: Legal aspects of free and open source software
__

 45

software, namely software distributed as such and made to work in general purposes PC,
not being embedded or as a component of any special purpose machine or apparatus.

This is not the place for a full discussion of how this practice seems to be illegal and directly
against the Convention – or simply nonsensical and detrimental. Let us just assume that
the practice is effective and patents can be enforced against pure software distribution.
Exclusionary rights conferred by patents can be used by patent holders to stop or impair
distribution of software, through legal means or other kind of impending threats.73

This is also not the place to discuss how – as matter of fact, and as it is a common way of
saying – the issued patents on software are more likely to “patent the problem” itself rather
than a solution to a problem, are overreaching and poorly described. But it is common
experience that it is almost impossible to find which patent is relevant to which piece of
software, because of how patents are issued and the language which is used and their
breadth of scope, as well as – or perhaps mainly – the nature of software.

5.1.1 Patents are enemies of Free Software

The very existence of software patents is negative and in conflict with Free Software.
Under copyright, as it is commonly interpreted, the authors of an original work are almost
sure that the copyright is only their own. If they reuse software coming from other sources,
they can safely rely on the inbound license and if the license is a Free Software one and
compatible with the outbound license of their software, they can assume they are not
trespassing on anybody else's copyright.

Under patents, neither of these two tests (originality, compatibility) is likely to be sufficient
or passed.

 Copyright covers the implementation of an idea, so if two independent authors
come to the same clever idea, they will very likely have different code, unless one
copies from the other. Patents cover the idea itself, so if one of the authors above
is granted patent protection, the other cannot use their own code, unless a separate
patent license is obtained.

 Most of patent licensing schemes have conditions that are directly in contrast with
the very working of Free Software. One for all, the running royalties contradict the
freedom to make copies and to distribute them. The very obligation to report sales
requires that distribution is controlled, which is per se contrary to the basic
Freedoms. Only very broad “patent promises”, frequently construed as “covenant
not to sue” can be considered compatible schemes.

Frequent objections to these arguments use some of the following arguments. The first is
that the other software developer can “invent around”, so that their software is made in a
different way that does not infringe the patent. This is true, of course, in theory, but the
objection does not take into consideration that patents are most often too broad and,
because they mainly “protect the problem rather than the solution”, any other solution to
the same problem would also be an infringement. Moreover, inventing around is precisely
impossible when the patented invention is enshrined in standards. If this is the case, it is
almost assuredly impossible to comply with the standard and avoid the patent. The
common parlance is that the patents are “necessarily infringed”. Only Royalty Free
standards (or more precisely, standards whose implementation does not require per-copy
royalties, or “running royalties”, provided that the license does not impose other
incompatible conditions) are compatible with Free Software and thus can truly be
considered “Open Standards”. Running royalty-bearing RAND74 and FRAND75 conditions
(at least as they are interpreted by most of patent holders), frequently associated with the
“open standard” term, are impossible to be made compatible with Free Software.

73 Such as a practice known as “patent FUD”, from FUD = Fear, Uncertainty, Doubt, a marketing technique which
is well described in http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt. This practice basically consists in
forcing competitors and/or users of competing technology to enter into a licensing agreement or to stop using the
competing technology by implying that contesting even unspecified threats of litigation will be unreasonable and
anti-economic.
74 Reasonable And Non Discriminatory
75 Fair Reasonable And Non Discriminatory

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 46

The most frequent rebuttal to the above is perhaps that the patented part can be
embedded into a proprietary, patent-license-compliant part, which can be used to
implement the function, while the rest remains Free Software, via an intermediate layer of
software that keeps the two bits at arm's length. This process is referred to as
“shimming”. Another way to achieve similar results is using “plugins” into a modular
system. While this is indeed possible and a used workaround, it is very likely to create an
unnecessary additional complexity on the one hand, and on the other hand it only allows
making Free Software that consumes the result of implementations of the standard, but
that does not implement the standard. It is Free Software that makes use of proprietary
software. The consequence is that, the more patent-ridden standards come into existence,
the more the breathing space for Free Software shrinks.

Proprietary software “used” by Free Software cannot even be distributed in the same way
as Free Software, or under an overall Free Software license, but needs to be acquired
separately by each and any of the recipients of Free Software, which is therefore heavily
crippled or deprived of much of its beneficial effects.

5.1.2 Patent provisions in Free Software licenses

As soon as the issue of software patent became a real nuisance, new licenses started to
tackle the problem with certain provisions to ensure that what is given with the “copyright
license” is not taken away with the use of the patent.

The most common provisions are:

 patent retaliation clauses (or termination clauses);

 implied or express patent licensing clauses.

A patent retaliation clause simply terminates the Free Software license in case the licensee
uses the patent to claim exclusionary rights against the covered software. So if A receives
software X from B under a license that contains the termination clause, and distributes it
(or a modified version thereof) and at the same time A requires B or any other recipient to
receive a separate license on the patents A claims on the same software X, B, as copyright
holder of X, can terminate the license, so that A becomes an infringer on B's copyright.

The implied or express license works on a different level. If A receives software X from B
and distributes it (or a modified version thereof), all recipients from A will receive a license
on the patents controlled by A that are relevant to X, so that if A were to claim patent
rights over X, B and all others could claim that they are already licensees for them.

The express license can come under two species:

 the license only covers the additions made by the patent holder (this is the case of
MPL), so that modifications made by others do not trigger a license on patents that the
contributor owns and that read on parts of the software that the same contributor has
not modified;

 the license covers all patents that read on distributed code, regardless whether
contributed by the patent holder or just received and distributed without modifications
(this is the case of GPL v.3)

In no known cases is the express patent license triggered by modifications made by third
parties where said modifications are not distributed by the patent holder.

5.2 Trademarks
Trademarks are used to identify a product or service, and/or their provenance, with a
name, a symbol or other signs, so that their identity is readily established and recognized
by the public. A trademark, however, is not necessarily associated to a Free Software
product. If the software is maintained by a group of developers or a foundation, the name
under which it is distributed can be claimed as being a de facto trademark, or a common
law trademark under certain jurisdictions. This is important when forks occur, and a clash
between the original group and the forking group (or other entity that can claim the use of
the sign) can occur. In other cases, the entity behind the software development registers

Workshop: Legal aspects of free and open source software
__

 47

and uses a trademark to identify its software products, under more or less strict trademark
policy, sometimes not even expressly fleshed out. Since the same Free Software product is
very likely taken and modified, even substantially, by third parties, this can lead to
confusion and can even have consequences on the validity of the registered trademark.

For this reason, some entities have implemented very strict policies. For instance, the
Mozilla Foundation requires that the name “Firefox” can be kept to identify only those
versions of the software that have been compiled and packeted by it, regardless of who
distributes them. Therefore, if someone takes the source code of Firefox and recompiles it,
even without modifying the source code, they cannot call the resulting product “Firefox”,
but they must use a different name. In fact, since the Debian Linux distribution repackages
it as a part of its quality assurance process, the version distributed with Debian is called
“Iceweasel”.

Another notable example is Red Hat. Red Hat manages one of the most widely adopted
Linux distributions. Because of its stability and quality, it is a certified target distribution for
enterprise-level software applications. Since it is entirely Free Software, there are perfectly
legitimate “clone” distributions, distributions that use the same codebase as Red Hat with
small additions and changes (CentOS and Oracle's Unbreakable Linux are the most famous
examples) so that they are almost entirely compatible with Red Hat and can easily become
certified, in case. Contrary, or in addition, to the use case of Firefox, where restrictions on
the use of the trademark are mainly due to quality assurance and control over the
trademark, Red Hat uses the trademark as a business tool for selling services, which can
only be used by those who deploy the Red Hat distribution.

Tight control of trademark is not incompatible with Free Software, rather the opposite.
Since trademark law has “fair use” concepts, use of the originator's trademark is generally
permitted to indicate provenance of the code, if other requirements of fair use of trademark
are complied with. This includes the permission to reference the trademarked software to
indicate that the other software is a derivative of it, a reimplementation, a drop-in
replacement, a compatible alternative, etc. As we have seen with a notable example,
trademark is one way to monetize software development and quality assurance in a 100%
Free Software distribution model.

5.3 Database rights
Database rights are sui generis rights (rights of their own kind) granted to a collector of a
set of data when relevant investment has been put into creating the database. They do not
relate to the copyright of the content of the database, or to the peculiar way the database
is construed. Finally, they do not relate to the database software that can host a database,
which is a software application like all others.

There is no particular interaction between database rights and software. It might happen
that a software distribution contains databases, but it is very hard to find relevant cases in
the licensing of Free Software, especially if the database – even if it is required – can be
replaced with an empty or meaningless one (so called “dummy” database). An example can
be content management software which comes with a database of configurations. In this
case it is not a database as such, but just a set of configurations that have no meaningful
purpose outside the application itself. In any event, as mentioned earlier, since this is an
integrated part of the application, the database rights can safely be considered under the
same license as the whole application, unless specific provisions in the licensing language
carve the database out of the license grant.

6. THE CLOUD
For the purposes of this discussion, “Cloud” refers mainly to Software as a Service (SaaS),
which is the farthest end of the different kinds of cloud computing. SaaS subverts the
traditional way of distributing software. Leaving aside the technical implications, for the
sake of this discussion SaaS delivers the same useful effects of software not by distributing
code – be it in object, source code or other forms – but by providing remote access to

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 48

interfaces and services of software executed on servers that are run by third parties, or
service providers.

If the relationship between a software maker and a software user is a license (express or
implied) under copyright, the relationship between the software service provider and the
user is a service contract and the performance of this contract is measured in service levels
and availability. There is no exchange of code and there is no direct relationship, or rights,
of the end user on the code. There are also no statutory protections granted by software
legislation (such as the right to make backup copies or to study how the software works or
to decompile it), to date.

Free software is widely used to power many cloud services,76 yet customers of these
services cannot benefit from the Freedom that they would benefit from if they used
software directly. They certainly have no rights to demand to receive the source code,
which is the foundation of most of the Freedoms of Free Software, because SaaS is not a
distribution of software, while copyleft is triggered by distributing modified copies of the
software.

6.1 A different license, The Affero GPL, or the AGPL
To close the gap, which at the time was referred to as “the ASP loophole” (“the Cloud” was
not yet a buzzword), Bradley Kuhn, a developer and Free Software activist, devised an
addition to the GPL, that was christened “Affero clause”, in cooperation with at-the-time
counsel to FSF Eben Moglen.77

In the Affero clause, the copyleft effect is not triggered by distribution, but relies on the
right to control modifications. Therefore, anytime software is modified, even if the code is
not distributed, but it is consumed through a network interface, there must be a convenient
facility where the corresponding source code is included.

The Affero GPL, initially being just an “unauthorized” variant of the GPL v2, is now an
officially recognized license of the Free Software Foundation and goes under the name of
GNU AGPL v.3. AGPL v.3 is made compatible with the GPL v.3 through an express
compatibility clause.

76 Google is a notable example: for references see http://en.wikipedia.org/wiki/Google_platform. But Twitter,
Amazon, Facebook, Rackspace etcetera all are based on FOSS technologies, which in several cases they make and
distribute as Free Software.
77 References available at http://en.wikipedia.org/wiki/Affero_General_Public_License

Workshop: Legal aspects of free and open source software
__

 49

REFERENCES
Fondamental reading:
 Daffara, C., Gonzalez-Barahona, C., Jesus, M. (Ed.), (2000), Free Software/Open

Source: Information Society Opportunities for EU, European Working group on Libre
Software, http://eu.conecta.it/paper/paper.html.

 Lindberg V. (2008), Intellectual Property and Open Source: A Practical Guide to
Protecting Code, Oreilly, California, USA Fontana R., Kuhn B.M, Moglen E., Norwood M.,
Ravicher D.B., Sandler K, Vasile J., Williamson A. (2008), A Legal Issues Primer for
Open Source and Free Software Projects, SFLC, New York,
https://www.softwarefreedom.org/resources/2008/foss-primer.pdf

 Meeker H.J. (2008), The Open Source Alternative, Wiley, New Jersey, USA.
 Rosen L. (2005), Open Source Licensing, Prentice Hall, New Jersey, USA.
 Van den Brande Y., Coughlan S., Jaeger T. (2011), The International Free and Open

Source Software Law Book, Open Source Press, Munich.
Other references:
 Free Software Foundation, What is Free Software – The Free Software Definition,

http://www.gnu.org/philosophy/free-sw.html.
 Eben Moglen, Free Software Matters: Enforcing the GPL, I,

http://moglen.law.columbia.edu/publications/lu-12.html.
 B. Perens, "The Open Source Definition", Open Sources: Voices from the Open Source

Revolution, http://perens.com/OSD.html, http://opensource.org/docs/osd
 Carlo Piana, Licenze pubbliche di software e contratto, in I contratti, n. 7/2006, IPSOA;

available at http://www.piana.eu/repository/720_727.pdf.
 Eric S. Raymond, The Cathedral and the Bazaar. Musings on Linux and Open Source by

an Accidental Revolutionary, http://www.catb.org/~esr/writings/cathedral-bazaar/.
 Lawrence Rosen, Bad facts make good law: the Jacobsen case and Open Source, IFOSS

L. Rev., 1(1), pp 27 – 32. Available at http://www.ifosslr.org/ifosslr/article/view/5.
 Sam Williams (2002), Free as in Freedom. Richard Stallman's Crusade for Free

Software, O'Reilly, California, USA.

Carlo Piana is an Italian Information Technology lawyer and a digital freedoms activist. Based in
Milano, Italy, and a member of the local Bar, serves as the external General Counsel for the Free
Software Foundation Europe (http://fsfe.org). He is member of the Editorial Committee of the
International Free and Open Source Software Law review (http://ifosslr.org), and member of the
Board of EuroITcounsel -- a network of European lawyers specializing in IT law. For more information:
http://www.arraylaw.eu

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 50

Legal aspects of free and open source software in
procurement: guidelines developed at the EU level

Rishab Ghosh, UNU-MERIT

ABSTRACT
This briefing paper examines issues around the public procurement of software distributed
under free/open source software licenses. It looks at public procurement regulations, the
state of current software procurement in Europe, and provides guidelines for best practices
for public procurement of open source software. It draws on previous publications of the
author, including the “Guideline on public procurement of Open Source Software” published
by the European Commission

CONTENT

EXECUTIVE SUMMARY 50

1 INTRODUCTION 51

2 PROCUREMENT PRINCIPLES 52

3 DETERMINING ACQUISITION NEEDS 55

4 DOWNLOADING OPEN SOURCE SOFTWARE 61

5 PURCHASING OPEN SOURCE SOFTWARE 64

EXECUTIVE SUMMARY
European governments are increasingly considering the use of Open Source Software (also
known as Free Software or Libre Software, or FLOSS78) as a means of reducing costs and
dependency on vendors, while increasing transparency and sustainability. A number of
debates have taken place on the costs and benefits of open source software, and much
discussion and interest has been expressed from the perspective of information
technologists.

This briefing paper is drawn from previous publications of the author, including the
“Guideline on public procurement of Open Source Software” 79 published by the European
Commission as part of the Open Source Observatory and Repository (OSOR). Here, open
source software is considered not as a matter of technology, but as a matter of public
procurement.

This briefing paper explains why it may be useful for public agencies to acquire open source
software, and more importantly, how they can do so within the current procurement
regulations, once a decision is made.

78 Free Software and Open Source Software, which may be used interchangeably when referring to software, are
defined by the Free Software Foundation and the Open Source Initiative. They refer to software that is available
under terms that allow users to use the software for any purpose; to study the software source code; to modify
the software; and to distribute the software and modifications. See www.fsf.org and www.opensource.org
79 Ghosh, R.A., Glott, R., Schmitz, P., Boujraf, A. (2010). Guideline on public procurement of Open Source
Software. Brussels: European Commission

Workshop: Legal aspects of free and open source software
__

 51

This briefing paper shows how open source software can even be downloaded free of
charge without a call for tenders, and provides criteria that can be included in tenders to
ensure good practice procurement of software.

Public procurement of software has long been far from a "level playing field", and
widespread preferences in public tenders for specific, named, proprietary software and their
vendors is one justification of why this paper is useful.

This briefing paper examines the following areas:

 Software public procurement landscape

 Software public procurement needs & principles

 How open source can be a functional requirement

 Downloading software vs procurement through tenders

 How open source functional requirements translate to tender requirements

This briefing paper is about procurement of software, but it should be noted that one of the
properties of open source is that it promotes collaboration and participation, rather than
just consumption through public procurement. The EU's own Open Source Observatory
(now available on the JoinUp portal at joinup.ec.europa.eu) provides a platform for open
source software collaboration among public agencies in Europe.

1 INTRODUCTION
1.1 Software public procurement landscape
At the European level, there are no binding policies on open source software procurement,
although there are some at the level of Member States or regions. The guidelines described
in this briefing paper are applicable in any context within EU Member states, regardless of
the existence of any policy, following European procurement regulations alone, with no
need for any specific open source policies.

Anti-discrimination (“equal treatment”) is a general principle of procurement regulations,
but this refers to equal treatment of potential economic operators: vendors of solutions
meeting tender requirements. It does not refer to technical standards, or licensing
regulations for software – i.e. it is possible to specify particular licensing requirements
(such as open source licensing) when that is required and justified for the purposes of a
tender.

Previous studies80 provide evidence which suggests that in public procurement of ICT,
practices that “do not constitute an equal treatment of all economic operators”81 are
apparent in tenders on more than an “exceptional basis”, as required by EU law82. In
particular, these studies have pointed out the frequency of mentioning the names of
specific companies and their products, or to require compatibility with previously purchased
proprietary ICT products.

In one study, a keyword search for tenders on TED, the EU’s public procurement tool,
showed that 149 tenders included brand names.83 Another similar sampling on a larger

80 Cf. OpenForum Europe (2008). OFE Monitoring Report: Discrimination in Public Procurement Procedures for
Computer Software in the Member States. Brussels: OFE.; Ghosh, R.A. (2005). An Economic Basis for Open
Standards. FLOSSPOLS project. Brussels: European Commission.; Ghosh, R.A., Glott, R., Schmitz, P., Boujraf, A.
(2008). OSOR Guidelines public procurement and Open source Software. Public Draft Version. Brussels: European
Communities.
81 European Union (2011). Guidelines for public procurement of ICT goods and services - SMART 2011/0044.
Tender Specifications. Brussels: European Union.
82 Reference to specific products or sources is allowed on "an exceptional basis, where a sufficiently precise and
intelligible description of the subject-matter of the contract [in functional terms or with reference to European
standards] is not possible", Directive 2004/18/EC, Article 23(8).
83 Ghosh, R.A. (2005). An Economic Basis for Open Standards. FLOSSPOLS project. Brussels: European
Commission.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 52

scale, published on OSOR84 “showed that 567 of 3615 software tenders (16%) between 4
January 2006 and 30 August 2008 contained one or more of the top 10 software brands”85.
In addition, the study cited showed that the top company in the list was clearly dominant,
with a 36.1% share of those tenders that did specify brand names (the second company
was mentioned in 20.2% of the tenders)86.

The European Commission, in a call for tenders for a study, quoted these figures to note
that such practice “doesn’t constitute an equal treatment of all economic operators who
could potentially deliver the product or service that is asked for. Therefore it is allowed only
exceptionally. 16% of the cases seem to imply more than an exceptional use of brand
names”87. Such procurement practice can stem from several reasons. As previous research
on public procurement of software in European national administrations has shown, it can
be based on a conscious decision to favour compatibility of newly purchased software with
proprietary systems that were previously in use88. It can also be based on lack of
awareness and knowledge of how to adhere to practices in public procurement of ICT that
are in line with the European regulatory framework. 89

1.2 Public sector needs: transparency, sustainability, cost-
effectiveness

Public sector consumers of software have an obligation to support interoperability,
transparency and flexibility, as well as economical use of public funds. When it comes to
public procurement, the principles applied to the public sector require them to support (and
certainly not to harm) competition through their procurement practices.

They are also obliged to avoid explicitly harming competition in the market of private
consumers. Thus, public agencies should not require citizens to purchase or use systems
from specific vendors in order to access public services, as this is equivalent to granting
such vendors a state-sanctioned monopoly.

They are also obliged to ensure the best cost-to-service ratio over the long term.

These principles are not only the basis for policy documents such as the European
Interoperability Framework; they are also implied by the legislative framework governing
public procurement, such as Directive 2004/18/EC on public supply contracts and Directive
2004/17/EC on utilities, and Directive 98/34/EC on the provision of information in the field
of technical standards and regulations90.

2 PROCUREMENT PRINCIPLES
2.1 Open Standards
Good practice eGovernment services should provide access based on open standards –
defined below - see section 0– as standards that are implementable by all potential
providers of equivalent technologies, including open source software. In particular,
government should never require citizens to purchase or use systems from specific vendors
in order to access public services: as described above, such a requirement would be
equivalent to granting those vendors a state-sanctioned monopoly.

84 Ghosh, R.A., Glott, R., Schmitz, P., Boujraf, A. (2008). OSOR Guidelines public procurement and Open source
Software. Public Draft Version. Brussels: European Communities.
85 European Union (2011). Guidelines for public procurement of ICT goods and services - SMART 2011/0044.
Tender Specifications. Brussels: European Union.
86 Supra note 84
87 Supra note 81
88 See supra note 83. Naming brands or vendors is not the only way to favour specific vendors; the European
Commission previously noted that hardware procurement discriminated in favour of Intel by mentioning specific
processor clock rates without explicitly naming “Intel”. EC Press release IP/04/1210, October 13, 2004
89 Ghosh, R.A., Glott, R., Schmitz, P., Boujraf, A. (2010). Guideline on public procurement of Open Source
Software. Brussels: European Commission.
90 These were specifically referred to by the EC in its announcement regarding the investigation on public
procurement of computers, concerning tenders specifying “Intel or equivalent”. EC Press release IP/04/1210,
October 13, 2004.

Workshop: Legal aspects of free and open source software
__

 53

The precise definition of the term 'open standards' is less important than a clear expression
of the reasons why open standards are desired in the first place. These reasons should form
part of the requirements for any procurement.

For procurement of software in general, it is good practice for public authorities to
implement software based on open standards – as defined by their economic effect of
fostering a fully competitive market91. Supporting technologies without considering their
degree of openness and their ability to foster a fully competitive market is harmful to
competition and net social and economic welfare. It is thus expensive, by definition, over
the long term. While software based on open standards may not always be available, public
agencies should encourage its development, and indicate their preference for open
standards to vendors though preferential procurement of software based on open standards
wherever it is available. Similarly, public agencies should use open standards wherever
supported by the software they implement, in preference to any other technologies
supported by such software.

The main advantage of open standards is the capacity to be interoperable with other
software systems. By definition, a software application based on open standards is fully
interoperable with any other application using the same standards, and it is possible for
any other application to use the same standard. By consistently requiring and using open
standards, software buyers try to achieve “vendor-independence”, which is to retain the
ability to change software products or producers in future without loss of data or significant
loss of functionality. This is achieved because one vendor’s software, if it is based on open
standards, is fully compatible with other software available from other vendors; therefore,
the customer does not get locked-in to that vendor simply because of the standards used.
Data created with that software is still fully usable with software from another vendor.

However, this goal is often incompatible with implicit or explicit criteria for software
purchasing, in particular those requiring that new software should be compatible with
previously purchased software. Buyers who use the latter criterion rather than a general
requirement for open standards or vendor-independent interoperability in effect remain
locked in to their previously purchased software. Thus, even if they see the benefits of open
standards and believe in interoperability, buyers whose preference for new software is
based on compatibility with previously installed software are not, in practice, supporting or
benefiting from interoperability.

2.2 Open source software
Open source software, Free Software, or libre software, also called FLOSS, is software that
a user can:

 use for any purpose

 study, by examining the source code

 modify and improve

 distribute, with or without modifications

This basic definition of FLOSS is equivalent to the Four Freedoms of the Free Software
Foundation (FSF, which officially defines "free software") and the Open Source Definition
maintained by the Open Source Initiative (OSI).

Open source software is copyrighted by its authors, and is made available under copyright
licences that provide the freedoms required by the above definition.

Most major free software or open source licences have gone through a formal process of
approval by the Open Source Initiative, and are listed on the OSI website; these licences
are OSI certified and authorised to use the "Open Source Initiative Approved License"
mark. Of course, licences that meet the terms of the Open Source Definition but have not
been formally processed by the OSI (and thus not listed on their website) are also open
source licences.

91 Ghosh, R. A. 2005. "An Economic Basis for Open Standards". FLOSSPOLS project, European Commission.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 54

2.3 Procurement principles and sustainability
Open standards and open source software, as separately outlined above, are both relevant
to the procurement principles described previously. When based on open standards, open
source software supports the sustainability of government ICT processes and systems
through:

 transparency and security: open source software is available along with its
source code which can be studied and modified. This can ensure the security of
the software, as its processes are examined in detail under widespread scrutiny
and improved. Open source software also allows appropriate stakeholders to
understand and monitor the functioning of government processes that are
implemented in software - for instance, to ensure that voting systems are
calculating results correctly.

 interoperability: whether implemented in open source or proprietary software,
open standards ensure interoperability, the ability of systems from different
vendors to function fully with each other without technical or legal obstacles.
Open source software, in particular, provides additional support for
interoperability, as its processes can be studied and adapted to work with other
systems.

 independence: transparency and interoperability allow current and future
vendors to work with, adapt and maintain the software, eliminating the
dependence of purchasers or third party support and service providers on the
vendors of the original version of the software.

 flexibility: open source software allows systems to be adapted and extended as
user needs evolve. It does this without requiring that the user go back to the
original vendor - new suppliers can be selected on a competitive basis.

These four properties ensure the sustainability of open source software. Sustainability
implies lower costs over the longer term but, more importantly, reduces the users' reliance
on the original vendors of the software. This means that selection criteria that have
traditionally been used to ensure the sustainability of software by ensuring the
sustainability of the original vendors (e.g. capital, turnover or size requirements) may not
be as important and can be reduced for the procurement of open source software. If, for
instance, the original vendor goes bankrupt, users can lose all their investments in that
vendor's proprietary software. However, if the software is open source, the user can find
another vendor to support the software with no legal or technical obstacles.

2.4 “Off-the-shelf” or custom software?
In the public sector, a lot of software is custom-built, or developed in-house. This is partly
due to the fairly specific application areas typical to the public sector – for instance, police
records management is not a domain with a large private-sector market. According to
another EC study92, about 10% of national public authorities in the EU had or were in a
position to release software they owned (custom-built or developed in-house) as open
source.

Since such software is generally controlled by the public sector organisation using it, the
issues related to open source and open standards are easier to address.

For off-the-shelf software, the vendor, not the user, controls the software. Thus, proper
procurement procedures are particularly important in the case of off-the-shelf software, in
order to help the procuring public agency exercise its control and choice.

92 European Commission DG Information Society and Media, 2008, Study on the effect on the development of the
information society of European public bodies making their own software available as open source. Available online
at http://www.publicsectoross.info

Workshop: Legal aspects of free and open source software
__

 55

2.5 “Level playing field” or open software?
Current common public procurement practices for software are frequently biased in favour
of specific proprietary software vendors. European procurement law may allow for such bias
under specific, exceptionally justified situations. However, in practice, neither is this bias
exceptional, nor is justification commonly provided.

The scope of this briefing paper is the procurement of open source software. However,
many of the principles and methods described in this briefing paper for the procurement of
software – whether based on open source or open standards – can be used simply to
ensure that procurement of software takes place in a fair environment.

As will be explained in the respective sections below, any software procurement should be
based on a clear definition of IT architecture, unbiased definition of requirements in
functional rather than vendor- or brand-based terms and a complete rather than narrow
and short-term estimation of costs and benefits. In addition, the methods described for
procuring software based on open standards may well be relevant for software in general,
justified by cost concerns.

Software acquired after such a process and with such justification may well be proprietary,
and will in that case have been properly acquired. Software acquired without such a
process may well have been acquired improperly and in a biased fashion; if it provides
explicit preference for particular vendors, without justification of exceptional circumstances,
such acquisition may even be in violation of public procurement regulations.

3 DETERMINING ACQUISITION NEEDS
Public procurement is based on determining needs, identifying the IT architecture in which
these must be implemented, translating these into requirements and evaluating available
options through the procurement process.

Interestingly, the acquisition of open source software does not necessarily require the use
of the public procurement process (i.e. tenders), as purchases of proprietary software and
services do. This special case is also discussed below.

3.1 Defining IT architecture
Public sector organisations have architectures that may differ in some respects from private
organisations due to differences in their essential goals or principles. Saving costs is a
principle that may be common to public and private organisations. Public organisations may
differ in that they are obliged to save costs over the very long term - as they are using
taxpayer funds and do not need to respond to short term business cycles. However, public
organisations often have constraints in the form of budgets that are set for relatively short
terms, and therefore still need to balance the short-term and long-term cost savings.

Similarly, transparency is a particularly important principle for public organisations.

The IT architecture needs of public sector organisations are strongly linked to
interoperability and open standards. As noted in the European Commission White Paper on
ICT Standardisation,93 “[p]ublic authorities need to be able to define their ICT strategies
and architectures, including interoperability between organisations, and will procure ICT
systems/services and products or components thereof, that meet their requirements.”

Public authorities do not function in a vacuum, and have particularly strong requirements
for the interchange of data: between different departments, different organisations,
different levels of government – and stakeholders such as businesses and citizens. Public
organisations also have obligations towards building sustainable and transparent systems.

93 European Commission, 2009. “White Paper on Modernising ICT Standardisation in the EU - The Way Forward”.
COM(2009) 324

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 56

Interoperability arrangements, when translated into requirements for an IT architecture,
justify technical specifications based on open standards. The need to exchange certain data
without barriers between citizens and the government, for example, is formalized into a
requirement for transparency of those data. This requires transparency in the IT
architecture for processes and systems concerned with those data. From this architectural
need follows, in terms of technical specifications, the justification for open interoperability
standards.

3.2 Determining requirements
Best practice IT procurement is based on defining clear requirements and finding the best
match to them. While procurement processes such as calls for tenders, in practice, often
ignore this principle to simply specify particular products or even vendors, this is not good
practice and may violate procurement regulations. It also makes it more difficult to
demonstrate the rationale behind any subsequent acquisition choices.

Requirements can come in a number of forms, which are briefly described below. These are
not in any way official categories but are only listed for illustrative purposes.

3.2.1 Functional

Functional requirements describe the purpose for which the IT solution is needed, and the
functionality which it is expected to provide. A clear description of functional requirements
is essential in order to ensure that procurement follows the principles of transparency and
independence, and is pro-competitive and cost effective in the long term. An example of
functional requirements would be a detailed description of the functionality that a system
for, e.g., maintaining property records is expected to have. Functional requirements should
not be defined in IT terms alone, but take in to account the needs to be addressed in the
problem domain.

3.2.2 Technical

Technical requirements may also be important, if there are specific constraints or needs
regarding the IT architecture and technologies with which the solution must fit. It should be
noted that compatibility with previously purchased IT solutions may seem like a very valid
technical requirement, but can also be a way of perpetuating the consequences of previous
purchasing decisions, perpetuating vendor lock-in and preventing an unbiased procurement
based on real organisational needs. Requirements for compatibility with open standards
and no proprietary elements, i.e. full compatibility across multiple vendors and producers,
increase the freedom of future procurement choices. When compatibility with a previously
purchased system requires compatibility with proprietary technologies, it can work against
the notion of interoperability across vendors and producers. Such interoperability is
essential for the sustainability and long-term cost-effectiveness of software, as already
explained above.

In essence, compatibility criteria, when tied to previously purchased proprietary solutions,
lock the buyer into that solution indefinitely, making its vendor's one-time win in a single
contract a win for a much longer period of future procurements. Since a key principle of
public procurement is that a purchase should not have consequences or limit the choice of
the buyer after the originally planned lifetime for that purchase, perpetuating such lock-in
is a poor procurement practice.

In particular, the effect of previous procurement restricting the choice in future
procurement should never last beyond the period foreseen in the original procurement – if
a tender was initially for 3 years, the same tender should not result in limiting the choices
of a future tender. Such long-term lock-in considerations are often not made in the
procurement process, resulting in many tenders calling for branded software from named
vendors.

The European Commission itself has reiterated that "[under] the EU public procurement
rules, contracting authorities may refer to a brand name to describe a product only when
there are no other possible descriptions that are both sufficiently precise and intelligible to

Workshop: Legal aspects of free and open source software
__

 57

potential tenderers"94. As a result of this, it is not possible to refer, for instance, to "Intel or
equivalent" microprocessors in public tenders.

3.2.3 Business / service model

The needs of the IT architecture and the organisation determine the best form in which an
IT solution should be structured, and this includes how it should be paid and accounted for.
As a result, certain business models and service models are naturally better fit for a given
set of requirements that are determined and defined by a public agency prior to
procurement.

This is not, in fact, drastically different from other areas of procurement. A public authority
may decide that it wishes to buy a car, or lease it; to commission the construction of a
bridge for a fixed fee, or on a build-operate-transfer model.

All these choices involve discrimination between business models, and a preference for
some business models over others - simply because a defined set of requirements is better
(or only) met by businesses adopting one business model rather than another. Businesses
that use a business model that cannot meet the needs of the public agency will naturally
lose out. Leasing companies will lose out if an agency's needs are best met by buying
rather than leasing cars. This is not against the principles of equal treatment and non-
discrimination. However, favouring a particular business (a vendor), instead of a business
model, goes against the principles of equal treatment and non-discrimination. Defining
procurement requirements based on particular needs is, however, fully in line with the
principles of equal treatment and non-discrimination - even if those needs can only be met
by certain business models.

Similarly, when it comes to IT, public authorities are free to choose solutions – and
business models - that suit their needs, as long as their needs are clearly justified. Often,
such choice - and discrimination - is made by default. For instance, a call for tenders for the
purchase of software licences "discriminates" against businesses that do not offer software
in the form of a product paid for at the time of purchase through licensing. A call for
tenders for software that can be modified, adapted and redistributed by the procuring
agency (such software may well meet the open source definition) "discriminates" against
businesses who only work on a model based on proprietary control and licensing software
for a specified number of users or computers. Of course, businesses may use many
different models and are free to adapt their business models to better meet customers'
needs. There is no obligation on the part of a public body to adapt its requirements to the
preferred business models of particular firms.

3.2.4 Open standards

Open standards in the acquisition of IT may be preferred, or required by policy. With or
without an explicit policy at European or national level, open standards may also be
preferred or required by policies specific to regions or to particular categories of
procurement.

Open standards may take the form of a functional requirement: e.g. it may be an essential
function of a new web-based eGovernment service that all citizens have the ability to fully
interact with it, without preference to customers of specific software or hardware vendors.
Open standards may take the form of technical requirements, for instance when specific
open standards are already in use and new acquisitions must work with them.

Open standards may also take the form of requirements that affect business models: e.g.,
a public authority wishes to have the full freedom to use in perpetuity the data files it
creates with new software applications, without being tied to the vendor of that software. It
is worth reiterating here the distinction between open standards and open source software.
Open standards can be implemented equally well by open source software and proprietary
software – and many proprietary software applications implement many open standards.

94 European Commission release reference IP/06/443 dated 4 April 2006; this is also a reference to Directive
2004/18/EC, Article 23.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 58

For the purpose of this briefing paper, the main property of open standards is that the
associated intellectual property rights (patents, copyright) are licensed in such a way as to
make open source implementations possible.

3.2.5 Open source

As stated previously, there is no EU-wide policy on the procurement of open source
software. There are several principles of the functioning of public authorities which may
justify the requirement of open source software. The acquisition of open source software
can be made on the basis of such justification; a general requirement in a call for tenders
for software solutions to be "open source" is not advisable (just as a requirement for
“proprietary software” or a brand name would not be advisable) without further details or
justification.

As with open standards, open source software can be justified in terms of functional,
technical and business model requirements, such as the need to avoid dependence on a
single vendor, a need to pay for services rather than license fees, etc. The examples
provided above for open standards can to some extent apply as well to open source.
Further justifications specific to open source are described below.

As a functional requirement, a public authority may wish to ensure the transparency of
government processes. Many of these processes - e.g. for voting systems - are
implemented in software, and the only way to ensure its transparency may be to require
that the source code be visible for public inspection.

As a technical requirement, a public authority may wish to be able to modify the software
(or have any third party of its choice modify it) in the future, in order to work with other
software, or have the software adapted to future needs.

As a business requirement, a public authority may wish to be able to distribute the software
internally or to other businesses, individuals or agencies with which it interacts, with no
additional cost based on the number of users. A public authority may even wish to be able
to make adaptations to the software before doing so (or have any third party of its choice
make such adaptations). Such requirements, if justified, are perfectly legitimate, and may
be effectively requirements for open source software.

In case software redistribution is a requirement, the public authority should determine
whether or not it wishes to allow a third party to appropriate the software, i.e. to modify
and redistribute it, as if it was proprietary. This will determine the type of licence that
should be used in case of redistribution: permissive (in case it is determined that
modifications of the software may be made proprietary) or reciprocal (in case it is
determined that any redistribution of the software by third parties must remain modifiable
and redistributable: this is typically called a “copyleft” license and examples include the GPL
and the European Commission’s own EUPL).

Finally, especially in case the public authority wishes to distribute the software to other
authorities, business or citizens, a legitimate requirement is to protect the administration
from liability, support and warranty obligations relating to redistributed versions of the
software.

The above requirements related to redistribution help determine the licence that will be
used for this redistribution. As discussed in the later section on ”Defining requirements”, an
early determination of this licence (or of a range of authorised licences) is important.

3.3 Examining costs and benefits
Public sector organisations need to keep the public interest in mind, and for procurement
this means that public funds should be spent in as cost-effective a way as possible. Freed
from the obligation of the short term financial cycles of the private sector, public
organisations are also obliged to maximise cost-effectiveness over the very long term.
However, with limited, short-term budget cycles, they need to find a good balance between
limiting the initial investments and limiting the overall, long term cost.

Workshop: Legal aspects of free and open source software
__

 59

Although this may be difficult, it is possible to evaluate spending over a long-term horizon
to make sure that taxpayers get the best value for their money. It is important to ensure
that decisions that look good for the short term do not result in higher expenses and
reduced choices over the long term.

3.3.1 Long-term costs

Open source software licences may be available free of charge. This does not mean that the
use of open source software is free, of course. Several costs may be involved in the
operation of software, including associated hardware, support and maintenance, training
and other services. The exit cost is also an important consideration, namely the cost
incurred in migrating to another IT system. This should properly be accounted for as a cost
not of the new system being migrated to, but of the old system being migrated from. After
all, if the old system were based on open standards, migration would not be as expensive,
thus the cost of migration is imposed by the current, old system.

Even if open source software licences are in fact free of charge (and therefore do not even
need a call for tenders in order to be acquired, as they can simply be downloaded by a
public sector organisation: see the next section), these other costs need to be estimated
over the long term. A decision on the software system to be used needs to be made after
evaluating all the long term costs associated with the use of that software system.

Similar considerations could be taken into account for the evaluation of proprietary
software, which also has requirements for hardware, support, customisation, training and
other services. Furthermore, with proprietary software a long term evaluation of costs
should include the frequency and necessity of purchasing upgrades.

In a normal procurement process, a pre-defined period is announced at the beginning of
the procurement procedure. It is assumed that all costs related to the procured software
that will be incurred during that period, such as upgrades, will be taken into account in the
evaluation of the bids. A basic assumption of normal public procurement is that at the end
of the pre-defined period, the procuring public agency has no contractual obligations
towards the original vendor.

However, when software based on proprietary standards and proprietary interfaces is
procured, these assumptions of normal public procurement break down. No contractual
obligations may exist towards the original vendor beyond the pre-defined lifetime of the
original procurement. However, there may be a very high technical and financial cost of
moving to a system from another vendor or producer – for example, converting previously
created data stored in a proprietary format of the original vendor into another format
compatible with other systems. Even acquiring support from another independent vendor,
without the support of the original vendor, may have very high costs.

Software is used to create documents, data and customised applications that, in the public
sector, have a life-time that may be well beyond the originally announced life-time of the
procurement procedure for the software. If the software originally purchased makes it
difficult to use the documents, data and customised applications with similar software from
other producers, then there is a high cost in terms of changing from the original software to
another software - the exit cost. With proprietary software this also means there is a high
cost in terms of changing from the original vendor to another vendor.

Thus, the assumption of normal procurement procedures, that all costs and obligations
relating to procurement are completed after the pre-defined period for which the
procurement takes place, appears to fail when applied to software. Contractual obligations
do not extend beyond the original procurement period for the software; but the need of the
public agency to be able to continue to use its own data and applications means that
technical obligations come into play, as well. Proprietary standards provide technical
obligations that result, in effect, in contractual obligations. This explains why so many
public agencies publish tenders for software referring to proprietary software by brand
name. They do this because they find the exit cost too high, and may simply not quantify
it.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 60

Since an essential principle of public sector IT systems is sustainability and independence,
the ability to change vendors and systems in the future is essential, and the cost of doing
so should be included in the evaluation of the cost of the original software purchase. Hence
the term exit cost, as these costs are essentially a result of the technical and business
model choices of the original software vendor.

The initial selection of proprietary software, if it uses proprietary standards or implements
standards in a way that is not exactly the same as software from other producers, can limit
future software choices.

As an example, a one-time, presumably competitive acquisition of a proprietary system for
web server administration can result in a requirement that all future additions to the web
site must be made with the same proprietary system. This not only limits the future choice
of the public agency that acquired the software in the first place; it may force citizens who
wish to access the public website, as well as businesses and other future contractors
developing additions to the public website to become customers of the vendor of the
original software acquired by the public agency. In some cases, citizens may not even be
able to access such a website without installing a browser from a particular vendor. Such
long-term costs of proprietary software are frequently not included in the evaluation
process, but are essential for a sustainable, efficient use of public funds.

In brief, long term dependencies on a particular vendor - extending past the boundaries of
individual procurement actions - are not good procurement practice and may even be
against regulations. Any decision, such as a further procurement action, that reinforces this
dependency on a particular vendor, should be avoided, as it will only increase the exit
costs.

Note that the argument for the inclusion of exit costs in evaluation is essentially one for
open standards, not necessarily open source software95. Since exit costs may be hard to
quantify at the time of initial procurement, choosing software that works fully with open
standards may be a way of avoiding the lock-in effect discussed above.

3.3.2 Long-term benefits (sustainability), additional services

Like costs, benefits should also be evaluated in the long term. Buying new software
because it is compatible with previously purchased software may seem to save on
migration and training costs. But when this software is proprietary, and is not fully based
on protocols and standards that are fully and freely supported by other independent
vendors, exit costs and associated costs may greatly increase over the long term, since the
agency's dependence on the proprietary vendor is increased as the agency creates more
and more systems and data relying on the proprietary software over time. Thus the
apparent short term benefit of compatibility is much reduced when considered over the
longer term.

Acquiring software that is fully open and sustainable by multiple independent vendors may
seem to have less benefits initially, especially if such procurement requires a more detailed
study of the market (e.g. for the acquisition of open source software by downloading, or for
the identification of appropriate open standards in case of procurement of software that
may be proprietary). It may require more detailed procurement specifications, such as
functional requirements. And the benefits of having independence and sustainability are not
always apparent in the short term. In the long term, however, the ability to change to a
new vendor independent of the initial vendor is key to the sustainability and independence
of the public agency, and the benefit of such a choice when examined in the long term is
thus great.

95 If open source software is being used without open standards, it may implement interfaces and formats that -
while not proprietary - are not widely used; it may limit interoperability with other software. However, open
source software does not lock the user to the same vendor, and with the source code available, it is possible to
have other software adapted to use the protocols implemented, at a cost. Moreover, open source software can
often be upgraded at no cost at all - through free downloads - or by any vendors of the procuring agency's choice
at a time of the agency's choice.

Workshop: Legal aspects of free and open source software
__

 61

3.3.3 Total Cost of Ownership (TCO) studies and evaluation

Total Costs of Ownership (TCO) is a term often cited in relation to software purchases.
However, there are several different methodologies of computing TCO, and despite the
word “total” present in the acronym, few studies include all the long-term costs involved in
software purchases, such as the costs of required regular upgrades, or the exit cost of
migrating to another software. It is therefore difficult to use TCO studies, or even compare
them.

Furthermore, such studies rarely evaluate anything other than quantifiable costs; the
benefits of flexibility, independence and transparency, essential to a public organisation,
may be qualitative and hard to quantify. Thus, it is advisable to analyse costs and benefits
for the needs of the specific public organisation concerned, over the long term, rather than
relying on published TCO studies. In particular, if an agency plans to issue a public tender
for a solution that will be used for a limited duration of time, it should consider the costs of
being able to migrate to a different solution when that duration is complete. Such costs of
migration are likely to be higher when the initial solution is proprietary.

3.4 Download or purchase?
Procurement regulations, especially European Directive 2004/18/EC, define when the
acquisition of anything, including software, must be put through a public contract, i.e. a
formal procurement process such as a call for tenders. As the legal analysis in the Dutch
Government's guideline, The acquisition of (open-source) software, notes, the acquisition of
open source software may not in itself require a call for tenders. This is true especially
when this software can be acquired free of charge, i.e. not only free of the licence fee, but
also free of any compulsory fees such as for manuals, media or services.

Thus, downloading open source software from Internet repositories free of charge is a
means of acquiring software that does not require a public contract. This is true even if the
acquiring agency wishes to, in the future, separately acquire paid services or support. For
such paid services, of course, a public contract process is required. Regulations do not
require that the acquisition of software and services be treated as a single acquisition
(which would have to be put out to tender), if the software itself can be acquired free of
charge, and if this acquisition is independent of and does not require those services.

Downloading software free of charge Purchasing software

Large emphasis on market research Large emphasis on specification

Knowledge to search for the appropriate
software to acquire (download) is
required by the agency

Bidders provide some of the knowledge, though
preparing the tender specifications may also
require considerable knowledge

Services must be tendered separately Software and services can be included in the
same tender

4 DOWNLOADING OPEN SOURCE SOFTWARE
When the public agency has decided that open source requirements are particularly
important for a specific software acquisition case, the process described in this section can
be followed. This process would end in the agency downloading open source software itself,
with no fee paid whatsoever. Separately, commercially provided services and support, if
required, may be acquired by publishing calls for tender. Note that this process can be
abandoned at any point - for instance, if the software cannot be found easily, or evaluated,
or once downloaded is found unsuitable for any reason. At that point, the other approach

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 62

described in the next section can be followed, namely, publishing a call for tender for open
source software.

Furthermore, the author recommends the method of downloading open source software as
part of the acquisition process: downloading software comes after all the steps described
above, i.e. the determination of requirements, and is simply an alternative to the step of
publishing a tender for the supply of software. It is not proposed here as an alternative to
the process of managed, well justified and monitored software acquisition.

4.1 Sources of software
Open source software can be redistributed by anyone, so there are naturally many sources
for download for most open source applications from the Internet. A number of issues need
to be taken into account. Although these are not very different from issues that must be
considered while selecting proprietary software, it is worth reiterating them.

4.1.1 Community & language

While selecting proprietary software, it is useful to get to know about the vendor and
support network around the software. Although the evaluation of tenders is based on the
documents provided with bids, public agencies may already be aware of solutions available
on the market thanks to interaction with vendors, reviewing press articles, trade
magazines, analysts' reports etc. For open source software, the process of "getting to
know" is similar, except that it can be more useful to interact with the community behind a
particular open source software application, instead of a particular vendor. As open source
software applications can be modified and redistributed, each typically has a community
behind it, made of different individuals, companies and other institutions - perhaps even
public agencies - providing modifications to the software, service and support.

Such a community of users and developers often interacts, and provides some level of
mutual support free of charge. Indeed, one of the goals of the EU Open Source Observatory
and Repository (OSOR) was to foster such a community for open source software of
particular relevance to the European public sector. Similar collaborative platforms for open
source software in the European public sector already play this role in countries such as
France, Italy, Spain, and Sweden among others.

Open source software is particularly suited to multi-lingual environments, as the freedom to
modify and redistribute the software makes it easy for people who speak a particular
language to freely add support for it. It is useful to investigate the extent of technical
support available for local language versions of the software, as there is often considerable
technical support available from user/developer communities.

Finally, there are local support groups for many open source software applications, and it is
useful to identify them.

4.1.2 Support & reliability

Open source software, like any software, varies in the level of support available and in the
software's reliability. For open source software in particular, communities can provide a
fairly high level of support free of charge. This may not be a practical option for any but the
smallest public agencies (or, at the other end, larger agencies with significant in-house IT
skills). However, this does mean that the software can be downloaded and tested, with the
help if required of the supporting communities, before any decision is made on whether or
not to deploy it (and perhaps acquire commercial support services).

For many open source software applications, having free support via the community is an
order of magnitude quicker and more effective than support by a remote supplier. Also, the
community can provide updates to software, making error corrections much quicker than is
the case for most proprietary software applications. Indeed, even commercial open source
support providers often rely on this free community support, combined with their in-house
expertise.

Workshop: Legal aspects of free and open source software
__

 63

4.1.3 Repositories

Open source software is actually downloaded from repositories of software, or via
catalogues. Communities of practice can often be found attached to such repositories.

4.2 Identifying and selecting software
When a number of open source software applications appear to meet an organisation's
needs, an evaluation and selection can be performed. This could, first, act as a filter for
general reliability and quality as described above, including by taking into consideration
issues such as maturity, size of the community, availability of commercial support from
various sources, etc. And finally, the selection of the software is based on its matching the
previously defined functional requirements.

Functional requirements can be matched to the software documentation - website, software
manual, etc. Open source software can simply be downloaded and tested - without
deployment, or in pilot deployments - to examine the extent to which it meets functional
requirements96.

Finally, an analysis may be performed of the costs of meeting the functional requirements
with the open source software. The solution that is the most cost-effective may be chosen -
considering all the various criteria discussed above. If the solutions identified through this
process are unsuitable, the procedure of acquisition through downloading can be
abandoned, and replaced with a call for tenders for purchasing open source software as
described in the next section.

4.3 Tenders for evaluation, support, customisation, services
Downloading software free of charge does not mean there will be no associated costs.
While in some cases it may be possible for a public agency to provide all the support for a
particular software application in-house, it will often make sense to contract this out. This
will naturally require a call for tenders.

To begin with, the process of identification, evaluation and selection of software to
download does not have to be performed (entirely) in-house at the public agency.
Depending on skills and resources available, it could be useful to have a public contract for
some of these tasks. A condition in such calls for tenders may, if justified, exclude the
winning bidder from further contracts (such as for services, support) related to the software
selected with their assistance, to prevent a conflict of interest and ensure their role as an
honest evaluator of open source download choices97. Of course, a new tender is not
required for every case of software selection. This assistance for evaluation and selection
could also be performed by a firm with a pre-existing contract for such on-going
consultancy services.

When a final selection has been made for the choice of software to be downloaded, with or
without the assistance of a contractor, the software has to be installed, maintained, and
supported. Note that downloading software with no contractual arrangements is free of
charge, but also means that the software usually comes with minimal warranties. In fact,
this is true also for much proprietary software, especially "off-the-shelf" software, where,
although many users assume large vendors bear some responsibility for their software, in
fact, software licences typically disclaim warranties. As with proprietary software, entering
into a service or quality assurance contract of some sort is the main method for a public
agency to share some of the responsibility for its use of open source software.

The software may be customised - the ability to be customised extensively is a key
advantage of open source software, and customisation may be one reason why open source

96 Of course, proprietary software can also be included in pilot deployments, although if this involves expenditure
it may require a formal procurement procedures.
97 An automatic exclusion, according to the case law of the European Court of Justice C-21/03 Fabricom,
contravenes the EC Public Procurement directive and such exclusion should be operated only on a case-by-case
basis, with bidders “given the opportunity to prove that, in the circumstances of the case, the experience which he
has acquired [through the execution of a previous contract such as the selection of technologies or software
applications] was not capable of distorting competition”

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 64

was selected by the public agency in the first place. For customising public sector software,
a paid contractor will usually have to be selected.

For all such additional services, open, competitive calls for tenders should be used to select
suppliers. In order to foster the developer community around the selected software, it may
be useful to introduce as a criterion in such tenders the level of interaction and contribution
the tenderer has within the appropriate community. This can be evaluated through
objective metrics such as: the number of posts the vendor (or employees) makes to
community online forums; the number of software bug reports filed, bug fixes submitted,
or code contributions; the sponsorship and participation of events related to the specific
software community such as conferences, workshops, hackathons, etc.

A key property of open source software is that anyone can provide support or other
services, depending on their skills. The market is thus fully competitive. No proprietary
control or advantage rests with an "owner" or "sponsor", or their dealers and agents. In a
call for tender placed for the purchase of specific proprietary software or related services -
which works against a competitive market and may violate procurement regulations - only
the proprietor itself, or dealers who are necessarily dependent on the proprietor, can bid. In
a call for tenders placed for the purchase of services related to a specific open source
software system, any independent supplier can bid. In fact, this distinction is similar to the
difference that one can find between a tender for the supply of Peugeot cars or services for
Peugeot cars (for which only firms dependent on Peugeot can bid), and a tender for fuel
and tyre service for a car (for which anyone with no ties to a particular car company can
bid).

5 PURCHASING OPEN SOURCE SOFTWARE
Recommended best practice procurement is based on the definition of functional
requirements - which may include properties that are equivalent to the characteristics of
open source software, or the characteristics of open standards.

5.1 Defining requirements
Calls for tenders for open source software - like all calls for tenders - should be based on
functional requirements, not on specific products or vendors. Properties of open standards
or open source software may be part of these requirements - either as minimum
requirements, or as properties that will be favoured.

5.1.1 Functional requirements

The author recommends that the tender specify the function of the software in detail, to
ensure transparency and objectivity in the procurement process. The purpose of the
software to be acquired and its essential attributes should be described in a vendor-neutral
manner. This is a general principle of public procurement; the author focuses here on the
additional functional requirements relating to the open source nature of the software, and
open standards.

5.1.2 Open standards

Provided that this is justifiable due to the interoperability needs of the procuring agency,
open standards can be required just as any standards. Open standards can be required
either by referring to the open standards by name, or by referring to an official list of open
standards. However, if no definition of open standards has been adopted or is applicable to
the procuring public agency, nor any officially approved list of open standards can be cited,
the standard may have to be defined in terms of functional specifications. The functional
properties of “openness”, as described below, could be included among the tender
specifications. This way, the openness of standards can be specified as a preference
(through the weight given to it in the award criteria), or a requirement (by making it a
mandatory in the specifications).

Workshop: Legal aspects of free and open source software
__

 65

Including open standards requirements or preferences in tender requirements is
straightforward: the properties of open standards could be described, together with a
justification, if required. Since the justification is part of the essential needs as determined
by the public agency, a specific definition of the term 'open standards' is, while useful, less
important. For software applications, the needs of a public agency may typically require
that:

 the standard is implementable by all potential providers of equivalent technologies,
ensuring sustainability and full competition with no advantages for some players
based on patent or copyright royalties or restricted availability of the technical
specifications; in addition, the standard should not discriminate against open source
software solutions98.

 the development of the standard is open and transparent, so that the public agency
is not dependent on one party for the future of the standard, and may even
influence its further development

 no restriction on re-use, so that the public agency can be certain that other public or
private organisations can use the standard, and so that the use of the standard in
open source solutions - which are often not compatible with re-use restrictions - is
possible.

Note that these typical public agency needs can be met by standards that fulfil several
published open standards definitions.

5.1.3 Open source

As mentioned at the start of this section, it is not good practice to simply state that
software should be "open source". Rather, the properties of open source software should be
described and justified.

Open source is not part of the technical nature of the software; it applies to the conditions
under which the software is provided. Thus, the desired properties of open source could be
included in the form of mandatory requirements in the description of the subject matter of
the contract, or in the contract documents (cahier de charges). Open source can be
included as a preference rather than a mandatory requirement including open source
requirements as award criteria.

Including open source requirements is straightforward: the properties of open source could
be described, together with a justification, if necessary. The needs of a public agency may
typically require that:

 the ownership of the software is transferred to the public agency, with no
restrictions on what the agency can do with the software; OR:99

 the software may be used for any purpose, as the public agency does not want to be
restricted in how it can use (or allow others to use) the software;

 the public agency or a third party of its choice may study the source code, as the
public agency wants to be sure of the functioning of the software; alternatively, the
public agency may require that any member of the public can study the source
code, in order to promote transparency of government processes, or enable other
parties to provide support and training associated with the software;

 the public agency or a third party of its choice may modify the software, as the
public agency does not wish to be dependent on the original vendor for bug-fixes,
adaptations and other modifications;

98 The open source non-discrimination requirement is included in the draft version 2.0 of the European
Interoperability Framework.
99 Note that some of the requirements below may be met by proprietary software under specific licensing terms,
but if all of these requirements are met, the software is by definition open source.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 66

 the public agency can distribute the software, with source code and modifications, to
anyone of its choice and provide recipients with the same abilities to use, study,
modify and redistribute, because the public agency needs to ensure that citizens and
firms and other agencies that access its services using the software or variants of
the software do not need to become customers of the original vendor in order to do
so; for example, a national administration may wish to be able to pass on the
software, without extra costs, to other administrations at the local, regional,
national or European levels.

When supported by an official policy at European, national or local level, such requirements
may not need explicit justification in each tender. Even if there is no official policy, such
criteria need only to be justifiable - i.e. if questions are raised - rather than justified in each
tender. But there is no harm providing explicit justification and references, and it is always
a good practice to (briefly) explain why certain criteria are present. For instance, the
explanation for the Dutch government's preference for open source software is the
"promotion of a level playing field in the software market and promotion of innovation and
the economy".

5.1.4 Open source for redistribution

When procuring software for the purpose of potential redistribution it is important to clarify
specific redistribution conditions for the component being procured, to ensure that the
public authority does not face licensing difficulties combining that component with other,
separately acquired software, for further redistribution.

To address such cases, Spain has adopted Royal Decree 4/2010 implementing the National
Interoperability Framework planned in the eGovernment Law of 11/2007.100 According to
RD Article 16.1, the licensing conditions of applications owned by Public Administrations
that can be made available for other Public Administrations or for the citizens, must:

 allow the free use/reuse of these applications;

 exclude the software appropriation by a third party;

 protect the administration from liability, support and warranty obligations.

Therefore, if the distribution is decided, it must be under open source conditions (combined
with strong “copyleft” conditions for avoiding the exclusive appropriation that would happen
if the software could become proprietary).

This means that, by default (and by choice, when it is appropriate), the Spanish
administration will distribute its software under the terms of the European Union Public
Licence (the OSI approved licence which has the same value in 22 European languages)101.

5.2 Other requirements
In addition to technical, functional requirements and the non-technical properties of open
source and open standards, calls for tender typically contain also other criteria for awards
and for determining the eligibility of bidders.

One property of open source software that distinguishes it from proprietary software is that
small, innovative companies, limited only by their skills and abilities rather than their
dependence on the software proprietor, can provide it on an equal basis. However, small
companies may have difficulties meeting stringent eligibility criteria with regard to financial
sustainability.

100 The Royal Decree (text in Spanish) is published at: http://www.csae.mpr.es/csi/pg5e41_ingles.html. On
ePractice see the presentation and comments from Miguel A. Amutio (in English)
http://www.epractice.eu/en/cases/eni and comments from P-E. Schmitz on OSOR
http://www.osor.eu/communities/eupl/blog/impact-of-the-spanish-royal-decree-4-2010-of-8-january-2010-1.
101 Similar provisions can be found in other recent policies in Member States, such as the 1 June 2010 directive of
the Government of Malta enabling, where appropriate, the distribution of its public sector software under the EUPL
- http://ictpolicies.gov.mt/docs/GMICT_D_0097_Open_Source_Software_v1.0.pdf

Workshop: Legal aspects of free and open source software
__

 67

Selection criteria for financial sustainability (minimum turnover, capital) should be in
proportion to the scope of the tender102. The main justification for financial sustainability
criteria for software is to ensure that the supplier will be able to provide support as long as
the software is being used.

With open source, the availability of the source code assures interoperability, and there is
no dependence on the original supplier. If the original supplier goes out of business, the
software can still be maintained by others; if others are not maintaining the software, the
public agency can hire a third party maintainer. This increased sustainability of open source
is justification for lowering the financial sustainability requirements, or lowering their
weight in the selection process for tenders for open source software.

5.2.1 Community interaction and contribution

One of open source software's main strengths is that the development process, at its best,
involves a community of several firms, individuals and other contributors. Contribution is
not limited to actual writing of lines of code, and extends to, for instance, providing detailed
reports of requirements and issues.

Thus, it may be useful to include the level of interaction and contribution the tenderer has
within the appropriate community as an award criterion in tenders or as an element
demonstrating process quality during the execution of the contract.

5.3 Tender selection
Bids responding to the call for tenders must be evaluated, and the best offer chosen by the
lowest price, or the best value for money as determined by the weighted award criteria.

In case of a preferential policy regarding open source - such as with the Dutch
government's "preference for open-source software in the case of equal suitability" - if bids
have the same price (in case of a lowest price tender) or the same value-for-money, the
open source bid is selected. Note that any such preferences must be justified in terms of
the functional, technical specifications and must not create obstacles to the “opening up of
public procurement to competition”103. As open source requirements are put in place in
order to meet the needs of the procurement body and do not favour specific vendors, in
contrast to procurement procedures requiring specific named brands of software, in general
they add to the opening up of procurement to competition.

Any such preferential policy related to open source does not really affect the tender process
described in this section, as the likelihood of exactly the same evaluation of two bids is
probably not high. Moreover, the inclusion of open source requirements as part of the
tender requirements is independent of any policy regarding open source in procurement; it
requires no preferential policies and works within any procurement procedures.

102 Directive 2004/18/EC, Article 44(2).
103 Directive 2004/18/EC Article 23(8)

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 68

Legal aspects of free and open source software in
procurement: national case studies

Philippe Laurent, University of Namur

ABSTRACT
Member States’ public authorities are increasingly interested in the advantages of procuring
free and open source software. Some of them have already adopted different strategies to
raise awareness, to level the playing field or even to establish positive discrimination for
such permissively licensed software. This briefing paper aims at illustrating the current
political and legislative trends by observing cases from the Netherlands, Italy, Spain, the
United Kingdom, Belgium and France

CONTENT

EXECUTIVE SUMMARY 68

1. BACKGROUND 69

2. METHODOLOGY 71

3. EXPERIENCES 71

4. OBSERVATIONS 85

ANNEX: COMPARISON TABLE 88

EXECUTIVE SUMMARY
Background
Free and open source software (hereinafter referred to as “FOSS”) is software licensed
under permissive terms, which enable the licensee to use, reproduce, modify and re-
distribute the software and its modifications at will.

This peculiar licensing scheme harmoniously fits the general public procurement principles
of transparency, flexibility, independence, interoperability, sustainability and cost-
effectiveness. Nonetheless, it has been observed that public procurement practices often
tend to disadvantage the adoption of FOSS. Some policy makers have therefore elaborated
diverse strategies to fix the problem, such as:

- the Dutch government with its NOIV action plan,

- the Piedmont Regional Council with its Act on software pluralism in the
administration,

- the Spanish lawmaker with its National Interoperability Framework,

- the UK government with its ICT Government Strategy,

- Walloon municipalities with the creation of an IT public company called IMIO, and

- the French Prime Minister with his Circular on the use of FOSS in administrations.

Workshop: Legal aspects of free and open source software
__

 69

Aims
This briefing paper aims at illustrating how Member States’ public administrations
(hereinafter 'PAs') at different administrative levels have implemented government
strategies and legislative texts to raise awareness, to level the playing field or even to
establish positive discrimination for such permissively licensed software in procurement
contexts.

It also aims at comparing these initiatives so as to identify some lessons that can be drawn
from the different experiences.

KEY FINDINGS
 The different initiatives analysed are not at the same stage of development and are

very diverse in terms of scope, scale, means and ambitions, which renders precise
comparison difficult.

 All the policy makers behind the analysed strategies were aware of the potential and
advantages of FOSS. Software reuse and costs reduction seem however to be the
two main incentives that generally triggered the initiatives.

 The degree of success of the different initiatives is very variable.

 The current public procurement regulatory framework as such does not seem to
constitute a hindrance to the adoption of FOSS by administrations. It provides ways
to develop practices aimed at levelling the playing field or granting preference to the
procurement of FOSS.

 Contracting authorities seem however to show different degrees of resistance, which
is motivated by multiple factors that tend to be overlooked.

1. BACKGROUND
Public services have become increasingly and irreversibly dependent upon information and
communication technologies. Many if not all administrations, at any level, have more or
less incorporated ICT into their operations. Whereas some of them mainly use simple
mainstream systems such as word processors, spreadsheets applications, emails, Internet
browsers, etc., other public services use complex – and usually highly if not totally
customised – database systems and information systems. Software represents a
qualitatively and quantitatively essential part of such systems. Accordingly, software
procurement has become a key element in the general administration governance, which
has a direct influence on the quality and effectiveness of its services.

The law regulates public tendering in order to ensure that economic operators are equally
treated and in order to safeguard the financial, economical and operational interests of the
contracting authority, which can be associated with the public interest104. Directive
2004/18/EC on the coordination of procedures for the award of public works contracts,
public supply contracts and public service contracts105 provides only for a general legal
framework establishing global principles such as transparency and non-discrimination.
National and local lawmakers and public administrations therefore benefit from a significant
leeway and may take important decisions as regards public ICT and software procurement
policies.

104 D. DE ROY, “L’irruption du logiciel libre dans le secteur public. A la découverte d’une actualité fort ancienne”, in
Les logiciels libres face au droit, Bruxelles, Bruylant, 2005, p.200.
105 Directive 2004/18/EC of the European Parliament and of the Council of 31 March 2004 on the coordination of
procedures for the award of public works contracts, public supply contracts and public service contracts, OJ L 134,
30 April 2004, pp. 114–240.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 70

Procurement practices have often been criticised for discriminating against FOSS or
excluding it from competition. Such exclusion does not always happen voluntarily, but often
results from misunderstanding or ignorance of the FOSS licences mechanisms and the
associated business models. For instance, besides the all too common requirements of, or
references to, proprietary trademarks or technologies, award criteria requiring the bidder to
be the owner of the copyrights or referring to the “purchase” of software licences are
equally detrimental to FOSS-based bids106.

Understanding FOSS and the business models which have been developed around it is the
first prerequisite to improve procurement practices. Traditional “proprietary software”107
business models are usually based on the exclusive exploitation of intellectual property and
the “sale” of licences limiting the scale and extent of software usage. FOSS is, on the
contrary, based upon a permissive licensing system coupled with an unrestricted access to
the source code, which enables the licensee to use, reproduce, modify and re-distribute the
software (and its modifications) at will108. In addition to being very permissive, FOSS
licences are royalty-free: licensors are not remunerated in exchange of the given
authorisation.

FOSS licensing uses intellectual property (normally copyright) in a versatile way, not to
monopolise technology and reap royalties, but to foster creation on an open and
collaborative basis. This very peculiar licensing scheme is sometimes described as a way to
reconstruct virtual commons109, namely open to all and non-exclusive resources. Such
peculiar licensing scheme has challenged the traditional business logic and has given birth
to alternative models, which are generally more focussed on the provision of services
(around the shared resources) than the selling of products (created on the basis of
monopolistic rights on the resource).

Like the European Union110, many Member States and administrations at national, regional
or local level are receptive towards the potential and advantages of FOSS, which fit the
general public procurement principles of transparency, flexibility, independence,
interoperability, sustainability and cost-effectiveness111. Accordingly, some national and
local governments have taken very diverse measures in order to promote the use of FOSS
in the administrations and to better adapt their procurement policies so as to take into
account FOSS specificities and to open the competition to FOSS-oriented bids.

The Legal Affairs Committee of the European Parliament has decided to hold a workshop on
the legal aspects of the use of FOSS, in which the legal aspects of procurement will also be
outlined. In this context, the Committee requested an ad hoc briefing paper identifying and
summarising relevant national experiences at different levels (national, regional or local) to
illustrate the current trends regarding the procurement and use of FOSS by public
administrations within the EU.

106 “For instance, a call for tenders for the purchase of software licences "discriminates" against businesses that do
not offer software as a product paid for at the time of purchase through licensing”. IDABC, Guideline on public
procurement of Open Source Software, available at https://joinup.ec.europa.eu/sites/default/files/studies/OSS-
procurement-guideline-public-final-June2010-EUPL-FINAL.pdf.
107 It is common to use the term “proprietary” software to refer to software that is not licensed under a FOSS
licence but governed by restrictive terms, and the use of which requires the payment of royalties.
108 See “The Free Software Definition”, available on the FSF official website, http://www.gnu.org/philosophy/free-
sw.html and “The Open Source Definition”, available on the OSI official website, http://opensource.org/docs/osd.
109 PH. LAURENT, “Free and Open Source Software Licensing: A reference for the reconstruction of “virtual
commons?” to be published in the proceedings of the Conference for the 30th Anniversary of the CRID, which took
place in Namur from the 20th to the 22th of January 2010, available at http://www.crid.be/pdf/public/7133.pdf.
110 In recent years, the European Union has paid increasing attention to the potential of free and open source
software. Already in its 2002 Communication "eEurope 2005: An information society for all," [COM(2002) 263
final, 28.5.2002], the European Commission stated that it intended to promote the use of open standards and of
open source software. As from 2006, the IDABC and ISA programmes of the European Commission are actively
promoting the use of FOSS. The European Commission even created and stewards the OSI certified European
Union Public Licence (EUPL). Interest in free and open source software has again increased after the European
Commission published, in September 2012, the Communication "Unleashing the potential of cloud computing in
Europe"[COM(2012) 529 final, 27.9.2012].
111 IDABC, “Guideline on public procurement of Open Source Software”, March 2010 (revised June 2010), available
at https://joinup.ec.europa.eu/sites/default/files/studies/OSS-procurement-guideline-public-final-June2010-EUPL-
FINAL.pdf.

Workshop: Legal aspects of free and open source software
__

 71

2. METHODOLOGY
This paper reports on a selection, analysis and comparison of different national and local
initiatives that have been implemented in order to improve procurement practices and to
invite administrations to better consider FOSS in software procurements.

This paper is far from being exhaustive and aims exclusively at illustrating some of the
many approaches adopted at different administrative levels in order to give a first insight
into the problems confronted and/or the results achieved. The selection has also been
made considering the direct accessibility of information and the purposes and limits of this
briefing paper.

In order to facilitate the observation of the different initiatives, some comparison points
have been identified.

The administrative level (national, regional or local) where the decision has been taken and
implemented is the first element of comparison.

The initiatives are classified into two categories, depending on their nature: legislation (law
or decree) or policy (programme, action or any other initiative from an executive body).

For each case, the relevant legal background has been globally analysed. The paper
describes the fixed objectives and how FOSS is being dealt with in such a legal framework
to reach these objectives.

Three types (or levels) of objectives are identified and serve also as a general comparison
point: raising awareness on FOSS, ensuring non-discriminatory treatment, and actively
encouraging or preferring FOSS procurement. If this third objective is upheld, and where
possible, the question whether or not the initiative addresses the issue of the selection and
assessment of awarding criteria is briefly tackled.

Where possible, information on the reception and effectiveness of the analysed solutions
has also been gathered and assessed with regard to the following questions, where
relevant: how effective different solutions have proven to be in practice in enabling FOSS
procurement, how they have been applied by administrations and/or the courts (some of
these initiatives have been challenged before court), and what types of licences are
involved.

One must finally note that, although open standards and FOSS are close concepts that are
usually addressed jointly to elaborate effective procurement strategies, this briefing paper
only focuses on the procurement of FOSS.

3. EXPERIENCES
3.1 Netherlands: NOIV action plan (2007-2011)
3.1.1 General presentation

The NOIV programme was an action plan112 that aimed at accelerating the use of open
standards and open source software113 within the national government, subsidiary
government bodies and the public and semi-public sector.

It had been adopted by the Dutch Government and had been implemented during the
governmental session (from 2007 to 2011) by a subdivision of ICTU (ICT-
Uitvoeringsorganisatie), an organisation established by the Ministry of the Interior and
Kingdom Relations, and the Association of Municipalities.

The main objectives of this action plan were:

112 Available in English at https://www.ictu.nl/archief/noiv.nl/files/2009/12/Action_plan_english.pdf.
113 “Open source software” is defined by reference to the OSI definition. See “De stand van zaken van het open
source software beleid van de Rijksoverheid”, available at http://www.ictu.nl/archief/noiv.nl/documenten-en-
publicaties/doc/het-open-source-beleid-van-de-rijksoverheid/index.html#more-7119.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 72

 to increase interoperability by accelerating the use of open standards,

 to reduce supplier-dependence through a faster introduction of open source software
and open standards, and

 to promote a level playing field in the software market, by promoting innovation and
the economy by forceful stimulation of the use of open source software, and by
giving preference to open source software during the process of IT acquisition.

Accordingly, three procurement principles were upheld by NOIV:

 Open source is not mandatory, but its use should be strongly encouraged,

 Open source software should be preferred if it is equally suitable, and

 Providers of open source software should have the same opportunities as providers
of closed source software.

In order to foster the use of FOSS by administrations at any level, some action lines had to
be followed. Some of them can be summarised as follows:

 A programme office within ICTU had been set up to support actively the action lines.
The office provided guidance, result-oriented advices and customised practical
support to the administrations. It also conducted measurements to monitor the
progress of the actions. A ranking has been maintained and prizes were offered
annually for the Most Open Public Organisation.

 At national level, meetings with businesses, suppliers and various government
target groups were organised to explain the plans and to reach practical agreements
for their implementation.

 Any administration had to develop an implementation strategy for tendering,
purchasing and using open source software. A fixed deadline (January 2009) was
adopted for the ministries.

 The Government was also to encourage the use of open source software in a
European context.

 The Government also intended to investigate to what extent all software under its
control or developed on its order could in principle be released under an open source
software licence. To that end, it showed specific marks of interest towards the
European Union Public Licence (EUPL). The Government realised that such objective
could mean that it would have to make tenders for development of software
conditional on its obtaining of the intellectual property for the software developed.

NOIV was therefore a general framework set up at national level to foster the development
and adoption of pro-FOSS procurement strategies in any Dutch administration.

NOIV clearly stated that the procurement rules are not applicable when freely downloading
FOSS. It noted, however, that administrations should select downloadable FOSS with care
and according to strict procedures. Notwithstanding this, the procurement of services
around such selected software (such as deployment, maintenance, customisation or
support services) must be done conforming to the classical rules, bearing in mind that
“open source software is provider-independent”114.

Amongst the documents issued by the NOIV, a guideline has been published that provides
examples of award criteria to be added in the calls for tender115 and which can be
summarised as follows:

114 « Download open source software », available at
https://www.ictu.nl/archief/wiki.noiv.nl/xwiki/bin/view/NOiV/Downloaden%2Bvan%2BOpen%2BSource%2Bsoftwa
re.html.
115 “Modelteksten voor open voorkeur in een (Europese) aanbesteding”, NOIV – November 2010, available at
http://www.ictu.nl/archief/noiv.nl/files/2010/11/NOiV_Modelteksten_voor_open_voorkeur_in_een_aanbesteding.p
df.

Workshop: Legal aspects of free and open source software
__

 73

 the involvement of the bidder in a FOSS development community (the criterion is
the number of developers who are members of the community);

 the participation of the bidder in the development of the provided software (the
criterion is the percentage of code that has been sent by the bidder as
contribution(s) to the project);

 the adoption by the bidder of a procedure ensuring the origin of the source code
that he provides;

 the bidder’s experience with W3C116 web content guidelines;

 the adherence of the bidder to a “open providers manifest” (issued by NOIV);

 the database independence of the software;

 the platform independence of a user interface;

 whether there is a large number of maintenance service providers available;

 the granting of rights (by way of a licence) to modify, to further develop and to
redistribute at will the source code of the software;

 the existence of an independent and freely accessible community of developers who
are involved in the development of the software (and of future versions thereof);

 whether the applications can be deployed on a diversity of different hardware and
operating systems; and

 the priority given to open standards.

As regards custom made code, the guideline explains that, instead of requiring the transfer
of IP, the call could provide that the code is delivered under the EUPL or another OSI
certified licence.

3.1.2 Results

The NOIV office has yearly monitored the progress in open standards and FOSS adoption,
and released interesting and very detailed reports117. In general, open standards adoption
seems a higher priority than FOSS adoption.

Conforming to what was expected from them in the action lines, all the ministries reported
having adopted a procurement strategy. NOIV noticed, however, that the ministries did not
seem to discriminate in favour of open source but neutrally aimed at “procuring the best
software”. It further noticed that awareness seemed to have been raised, but that the
procurement practices could nonetheless be improved118.

Mathieu Paapst (ex-member of the NOIV office) is even more pessimistic about the results
of the programme after a survey conducted on 80 Dutch calls for tender published between
January and June 2010. To the question whether a policy like the action plan NOIV
influences behaviour regarding the practice of public tenders, he answers that “despite the
desired affirmative action for Free/Libre and Open Source Software, in almost half (47.5%)
of the tenders there is [according to the way the terms are drafted] a preference for closed
source vendors or products. Because of this preference vendors of FLOSS products are not
given a fair chance to win the bid. There is no level playing field in the software market and
government buyers arguably do not act according to the EU treaty principles of equal
treatment, non-discrimination and transparency” 119. Mathieu Paapst noticed that 22
tenders out of 80 mentioned a preference for FOSS, out of which 15 only provided that
such preference would actually result in a reward of extra points under the weightings
applied to the award criteria.

116 The W3C is the main international standards organization for the World Wide Web.
117 The more recent monitoring report that we found is the “Monitor NOIV 2010” of January/February 2011, which
is available at http://www.ictu.nl/archief/noiv.nl/files/2011/06/NOiVmonitor2011.pdf.
118 “De stand van zaken van het open source software beleid van de Rijksoverheid”, op. cit.
119 M. PAAPST, “Affirmative action in procurement for open standards and FLOSS”, IFOSSLR, 2010, vol.2, issue 2,
available at http://www.ifosslr.org/ifosslr/article/view/41/76.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 74

3.1.3 Features

 NATURE: Policy (official programme of the government)
 DECISION LEVEL: National (Dutch government)
 ACTION LEVEL: Any level (central government, provinces, local authorities)

Any governmental institution (education, healthcare, social
security)

 OBJECTIVES: Raising awareness of FOSS
Promoting a level playing field
Giving preference to open source software, if equally suitable

 MEASURES TAKEN: Promotion of FOSS
Creation of a support office (which issued many guidelines)
Guidance and support
Guidelines on award criteria

 LICENSING: Procured software should be under an open source licence as
defined by the OSI
The EUPL is considered when an administration contemplates
to license its own software

 EFFECTIVENESS: Awareness has increased.
As regards the objective to level the playing field, practices do
not seem to have been satisfactorily improved.
Positive discrimination has in general not been adopted.
A minority of administrations has, however, adopted FOSS
oriented awarding criteria.

3.2 Italy: Piedmont Region’s Act of 2009 and beyond
3.2.1 General presentation

Italy is an unitary state, organised in such a way that many matters are reserved to the
State, but regions can nonetheless adopt specific laws on their own internal functioning. In
2009, the main national law that governed software procurement was neutral as regards
the nature of the procured software, FOSS being an option amongst others120.

As regions have the power to adopt more detailed rules with regard to public procurement,
the Piedmont Regional Council passed, on 26 March 2009, an Act establishing “rules on
software pluralism, on the adoption and the diffusion of free software and on the portability
of digital documents in the public administration”121.

The aim of the region was to give priority to FOSS.

This is clearly reflected in the far reaching provisions of the adopted law, which provides,
amongst others, the following:

 The region uses software applications whose source code is available and which it
can freely modify to adapt them to its needs.

 Except for software already in use, the region must preferentially procure Free
Software and software whose source code is verifiable by end users.

 When procuring software, the region must carry out a technical and economic
comparative assessment among the different solutions available on the market. In

120 C. PIANA, “Italian Constitutional Court gives way to Free-Software friendly laws”, IFOSSLR, 2010, vol.2, issue
1, available at http://www.ifosslr.org/ifosslr/article/view/38.
121 Legge regionale n. 9 del 26 marzo 2009, Norme in materia di pluralismo informatico, sull'adozione e la
diffusione del software libero e sulla portabilità dei documenti informatici nella pubblica amministrazione, (B.U. 02
Aprile 2009, n. 13), available at
http://arianna.consiglioregionale.piemonte.it/ariaint/TESTO%3FLAYOUT=PRESENTAZIONE&TIPODOC=LEGGI&LEG
GE=9&LEGGEANNO=2009

Workshop: Legal aspects of free and open source software
__

 75

doing so, the region takes into account the total cost of ownership of each solution,
the exit costs, but also the potential interest that other administrations could see in
reusing the software and its interoperability potentials.

 If the region decides to use proprietary software, it must justify the reasons for such
a choice.

 The region makes available - as free software - the computer programs that are
developed on the basis of its own specifications and that are entirely financed by
public funds.

3.2.2 Results

This initiative was acclaimed by FOSS advocates, not however by the national government.
Indeed, the Italian government deemed that by adopting such law, the Piedmont region
had exceeded its authority. The national government therefore lodged a claim before the
Constitutional Court, raising two main grounds for annulment. The Constitutional Court
issued a decision on 23 March 2010122.

The first ground for annulment, based on the fact that copyright law is a matter that is
reserved to the central state, was upheld by the court. The corresponding illegal provision
was declared illegal.

The second ground for annulment was more specifically aiming at the pro-FOSS provisions
of the regional law. The Italian government alleged that any provision favouring FOSS
adoption would be in conflict with the national laws on competition, as it would discriminate
against the proprietary software industry123.

This argument was not upheld by the Constitutional Court, which answered the argument
as follows:

 “The choice is not an exclusive one, but just preferential and requires a
comparative evaluation, as is confirmed by the reference to the possibility to use
proprietary formats […] under the condition that in such case the Region shall
provide motives of its choice [...].

Finally, it must be once more reminded that the concepts of free software and
software with inspectable code are not notions concerning a given technology, brand
or product, instead they express a legal characteristic. At the end of the day, what
discriminates between free and proprietary software is the different legal
arrangement of interest (licence) upon which the right of using the program is
based; and the choice concerning the adoption of one or the other contractual
regime belongs to the will of the user.

It follows that the damage to competition feared by the counsel of the State with
regard to the law in question, is not envisaged”124.

Marco Ciurcina, who was at that time president of the ASSOLI (Associazione per il Software
Libero), assessed that the Constitutional Court’s decision, which was welcomed by the
Association125, would make it easier for other administrations to adopt similar laws126.

This premonition proved to be right, as in 2012, the national Digital Administration Code
(Codice dell'amministrazione digitale127) was modified twice in order to establish a
preference for FOSS in the public administrations.

122 Sentenza 122/2010, Corte Costituzionale della Repubblica Italiana, available at
http://www.cortecostituzionale.it/actionPronuncia.do.
123 According to Roberto Di Cosmo, this argument would have been inspired by proprietary software lobby. See R.
DI COSMO, “Constitutional Court in Italy rules out anti-free-software lobbyist arguments...”, 30 March 2010,
available at http://www.dicosmo.org/MyOpinions/index.php/2010/03/30/100-constitutional-court-in-italy-rules-
out-anti-free-software-lobbyist-arguments.
124 As translated by C. PIANA in “Italian Constitutional Court gives way to Free-Software friendly laws”, op. cit.
125 “A landmark decision of the Italian Constitutional Court: granting preference to free software is lawful”,
available at http://www.softwarelibero.it/corte-costituzionale-favorisce-softwarelibero_en.
126 Joinup News of 30 March 2010, “IT: Constitutional court says administrations can favour open source”,
available at https://joinup.ec.europa.eu/news/it-constitutional-court-says-administrations-can-favour-open-
source.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 76

Article 68, part 1 and 2 of the Code read as follows:

“1) In accordance with the principles of economy and efficiency, return on investment,
reuse and technological neutrality, public administrations must procure computer programs
or parts thereof as a result of a comparative assessment of technical and economic aspects
between the following solutions available on the market:

a) develop a solution internally;

b) reuse a solution developed internally or by another public administration;

c) adopt a free/open source solution;

d) use a cloud computing service;

e) obtain a proprietary license of use;

f) a combination of the above.

1-bis) For this purpose, before procuring, the public administration (in accordance
with the procedures set out in the Legislative Decree 12 April 2006, n. 163) makes a

comparative assessment of the available solutions, based on the following criteria:

a) total cost of the program or solution (such as acquisition price,
implementation, maintenance and support);

b) level of use of data formats, open interfaces and open standards which are
capable of ensuring the interoperability and technical cooperation between the
various information systems within the public administration;

c) the supplier's guarantees on security levels, on compliance with the rules on
personal data protection, on service levels [,] taking into account the type of
software obtained.

1-ter) In the event that the comparative assessment of technical and economic
aspects, in accordance with these criteria of paragraph 1-bis, demonstrates the
impossibility to adopt an already available solution, or a free/open source solution,
as well as to meet the requirements, the procurement of paid-for proprietary
software products is allowed. The assessment referred to in this subparagraph shall
be made according to the procedures and the criteria set out by the Agenzia per
l'Italia Digitale, which, when requested by interested parties, also expresses
opinions about the compliance with them.

2) In the preparation or acquisition of computer programs, public administrations,
whenever possible, must adopt solutions which are: modular; based on functional
systems disclosed as stated by Article 70; able to ensure the interoperability and
technical cooperation; able to allow the representation of data and documents in
multiple formats, including at least one open-ended (unless there are justifiable and
exceptional needs).

2-bis) The public administrations shall promptly notify the Agenzia per l'Italia
digitale the adoption of any computer applications and technological and
organizational practices they adopted, providing all relevant information for the full
of the solutions and the obtained results, in order to favour the reuse and the wider
dissemination of best practices” 128.

Even though the provisions of § 1-bis are not unambiguous and need interpretation, and
although the role of the Agenzia per l’Italia digitale could have been further detailed, it is
clear from § 1-ter that the procurement of FOSS must be preferred to proprietary software.
Not only would procuring FOSS comply with the order of priority as established in the law,
but it would also allow administrations to reuse and share software amongst them, which
seems to be the final goal of the Italian lawmaker.

127 Available at http://www.digitpa.gov.it/amministrazione-digitale/CAD-testo-vigente.
128 As translated by S. ALIPRANDI & C. PIANA in “FOSS in the Italian public administration: fundamental law
principles”, IFOSSLR, 2012, vol.5, issue 1, available at http://www.ifosslr.org/ifosslr/article/view/84.

Workshop: Legal aspects of free and open source software
__

 77

According to Simone Aliprandi and Carlo Piana, “The decision was made in a dire situation
of the national economy and inspired by practical reasons (spending review) rather than
idealistic ones. It seems however a new direction that can hardly be changed. Only it can
be made less compelling by a slack implementation, if not outright non compliance.
Vigilance is therefore required”129.

3.2.3 Features of the Piedmont Region’s Act
 ACTION: Legislation
 DECISION LEVEL: Local (Piedmont region)
 ACTION LEVEL: Local (Piedmont region)
 OBJECTIVE: Favouring the procurement, sharing and re-use of FOSS by the

administrations
 MEASURES TAKEN: Adoption of a law establishing procurement rules
 LICENSING: Not specified (reference to free software)
 EFFECTIVENESS: The initiative has been successful and survived a challenge

before the Constitutional Court.
A couple of years after the Constitutional Court’s decision, at
national level, the Code for the Digital Administration has been
modified to favour FOSS and promote sharing and re-use of
software. How the amended code will be concretely applied
remains uncertain.

3.3. Spain: National Interoperability Framework
3.3.1 General presentation

The Spanish Citizens Electronic Access to Public Services Act (eGov Law 11/2007)130 grants
citizens the right to interact with the public administration by electronic means. The law
regulates the basic aspects of IT use, but also the cooperation between administrations and
the reuse and transfer of applications amongst them (articles 45 and 46).

In application of article 42 of the Law, the Royal Decree 4/2010131 implements the Spanish
National Interoperability Framework, and contains several provisions (articles 16 and 17)
aiming at fostering the use of FOSS in the public sector.

Article 45 of the Law provides that when public administrations are owners of IP rights on
their applications, they may132 make them available to any other public administration
without compensation and without the need of an agreement. These applications can be
declared “open source” when this allows a better transparency in the functioning of the
public administration or when this fosters the incorporation of the citizens in the
information society.

Article 16 of the Royal Decree does not oblige public administrations to redistribute their
applications to other administrations and citizens, but if they do, they must take into
account that the aim is to allow the use and the reuse of the software, as well as the
protection against its exclusive appropriation by a third party. The transferor must however
protect itself from liability, support and warranty obligations. The provision details the
licensing conditions, which must ensure that

 the software can be executed for any purpose,

 the source code is available,

129 Idem.
130 Ley 11/2007, de 22 de junio, de acceso electrónico de los ciudadanos a los Servicios Públicos, available at
https://www.boe.es/buscar/doc.php?id=BOE-A-2007-12352.
131 Real Decreto 4/2010, de 8 de enero, por el que se regula el Esquema Nacional de Interoperabilidad en el
ámbito de la Administración Electrónica, available at http://www.boe.es/buscar/doc.php?id=BOE-A-2010-1331.
132 The provision reads as follows: “Las administraciones titulares de los derechos de propiedad intelectual de
aplicaciones, desarrolladas por sus servicios o cuyo desarrollo haya sido objeto de contratación, podrán ponerlas a
disposición de cualquier Administración sin contraprestación y sin necesidad de convenio”.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 78

 the software can be modified or improved, and

 the software can be redistributed to other users with or without changes, on the
condition that the derived work keeps these four “guarantees”.

The last condition entails the use of a copyleft licence, namely a licence which provides a
specific clause that, generally speaking, obliges anyone who redistributes the software,
with or without changes, to redistribute it under the same licence133.

Outstandingly, the last paragraph of article 16 provides that

“To this end, the application of the European Union Public Licence will be sought,
without prejudice of other licences that can guarantee the same rights stated in the
[previous] paragraphs […]”134.

The EUPL is therefore set by law as the licence “by default”135 to be required in
procurements, and which has been pre-validated by the lawmaker as being compliant with
the 4 conditions set forth above. If the public administration wants to use another licence,
it has to check whether the contemplated licence meets the same conditions.

Article 46 of the Law provides that public administrations must keep updated registries of
applications for free reuse, in cooperation with a Technology Transfer Centre that is set up
and run by the General State Administration, and conforming to the principles provided by
the National Interoperability Framework. Article 17 of the Royal Decree further provides
that public administrations have to take into account the solutions freely reusable available
in those registries and which could meet (totally or partially) the requirements of the new
systems and services, and consider the improvement and update of the solutions already
implemented. In order to optimise the sharing and collaborative process, the ongoing
development should be published in the registries at an early stage, without waiting for the
code to be finalised.

“Reuse” is therefore the catchword in Spain as regards ICT public procurement, and FOSS
seems to be perceived as a key element for achieving this goal. However, the Royal Decree
does not establish any preference for the acquisition of software products based on FOSS.

3.3.2 Results

The Technology Transfer Centre has been created136. It keeps and maintains the repository
of reusable software, which is connected to several forges137 operated by autonomous
communities (Andalusia, Catalonia and Extramadura) and to the European JOINUP platform
(operated by the ISA programme)138.

The Centre is functioning hands in hands with the CENATIC (Centro Nacional de Referencia
de Aplicación de las TIC basadas en fuentes abiertas), which is a very active centre created
by the Spanish Government and which raises awareness on and promotes the usage of
FOSS in any sector, with a special focus on, amongst others, the public administrations.
CENATIC organises a national observatory of free software139, which has released the

133 The GPL is the most famous copyleft licence. There are however many types of “copyleft effects” which cannot
be further described in the present briefing paper. See for instance PH. LAURENT, “Free and Open Source Software
Licensing: A reference for the reconstruction of “virtual commons?”, op. cit.
134 The provision reads as follows: “Para este fin se procurará la aplicación de la Licencia Pública de la Unión
Europea, sin perjuicio de otras licencias que garanticen los mismos derechos expuestos en los apartados 1 y 2”.
135 See P.E. SCHMITZ, « Impact of the Spanish Royal Decree 4/2010 of 8 January 2010 », available at
http://joinup.ec.europa.eu/community/eupl/news/impact-spanish-royal-decree-4/2010-8-january-2010.
136 Information on the Technology Transfer Center is available at
http://administracionelectronica.gob.es/?_nfpb=true&_pageLabel=P803124061272300995675&langPae=es.
137 A forge is a software repository allowing the collaborative development of software over the Internet.
138 Dirección General para el Impulso de la Administración Electrónica del Ministerio de Hacienda y Administración
Pública, Reutilización de activos y aplicaciones en la Administración, August 2012, available at
http://www.cenatic.es/publicaciones/divulgativas?download=135%3Areutilizacion-de-activos-y-aplicaciones-en-la-
administracion.
139 More information available at http://observatorio.cenatic.es.

Workshop: Legal aspects of free and open source software
__

 79

results of a survey aiming at assessing the use of FOSS in the Spanish Government in
2010140. The findings of the survey can be summarised as follows:

 The majority of the organisms of the national administration (nine out of ten) are
using some FOSS. From a quantitative point of view, 40% of server technologies
and 15% of desktop technologies are FOSS.

 Outstandingly, 68% of the surveyed organisms acquired FOSS by simply
downloading it from a repository or a forge, and 46% of them have developed
software based on FOSS (server software).

 One third of the surveyed organisms have procured FOSS (14,7% having required
FOSS solutions if possible, and 21,7 % valorising the fact that the proposed solution
be FOSS based). However 38,5% have confirmed that they do not adopt any
specification in their tenders on that respect.

 27% of the surveyed organisms confirm having reused FOSS solutions developed by
other public administrations.

However, the surveyed administrations also let know that their IT departments needed
more personnel specialised in FOSS and that more training was needed. 86% of them
deemed necessary to improve the knowledge in FOSS.

This legislative initiative has been confirmed and further extended at national level by the
Act 18/2011 regulating the Use of ICT in the Administration of Justice141, which restates142
the rules regarding the reuse of software via FOSS licensing as adopted in the eGov law
and the Royal Decree.

This general legal framework has also inspired the administrations of the autonomous
communities. Indeed, the Basque Country has, in turn, adopted a decree to establish a
general principle of openness which is not limited to the eGov applications but applies to
any software owned by the public administration143.

3.3.3 Features
 ACTION: Legislation
 DECISION LEVEL: National
 ACTION LEVEL: Any level
 OBJECTIVES: To foster reuse of administration software by promoting and

explicitly authorising the application of FOSS licences
 MEASURES TAKEN: Legal authorisation to redistribute software free of charge

under a FOSS licence
Creation of a technology transfer centre listing and hosting the
reusable software
Legal obligation to consider the existing reusable software
when procuring software.

 LICENSING: The EUPL is the “default” licence, but other copyleft licences
are valid alternatives

140 El Software Libre en los Organismos Públicos de Ámbito Estatal, Cenatic, December 2011, available at
http://www.cenatic.es/publicaciones/onsfa?download=117%3Ael-software-libre-en-los-organismos-publicos-de-
ambito-estatal.
141 Ley 18/2011, de 5 de julio, reguladora del uso de las tecnologías de la información y la comunicación en la
Administración de Justicia, available at http://www.boe.es/buscar/doc.php?id=BOE-A-2011-11605.
142 Article 55 et seq.
143 Decreto 159/2012, de 24 de julio, por el que se regula la apertura y reutilización de las aplicaciones
informáticas de la administración pública de la Comunidad Autónoma de Euskadi, available at
http://www.euskadi.net/cgi-
bin_k54/ver_c?CMD=VERDOC&BASE=B03A&DOCN=000111019&CONF=/config/k54/bopv_c.cnf

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 80

 EFFECTIVENESS: Public Administrations seem globally informed on FOSS.
Administration software has been reused.
Positive discrimination has sometimes been adopted.
There is no clear information about whether the playing field is
actively levelled.

3.4. United Kingdom: Government ICT Strategy
3.4.1 General presentation

In March 2011, the United Kingdom’s Cabinet Office issued a document officialising the
adoption of a new Government ICT Strategy144. Cutting costs serves as a leitmotiv145 and
sharing software as a means to an end. The document states that its global aim is
openness towards people, the organisations that use its services, and towards any provider
regardless of size. The strategy stresses the need to let SME’s access the market, to
recentre in-house capacities and to avoid oversized, and thus very costly, projects146. The
government deems it also important to streamline and centralise the procurement
practices. To do so, it has planned to develop a new operating model for departments and a
new procurement system.

The Government ICT Strategy also aims at fostering the reuse and adaptation of systems
which are available ‘off the shelf’ or have already been procured by another part of the
government. Paragraph 15 of the Strategy explicitly states that the different departments
will reuse and share ICT solutions and contracts, rather than purchasing new or bespoke
solutions and that the government will not commission new solutions where something
similar already exists. To identify reusable applications, equipment and resources, the
government builds up a cross-government asset register and also plans to create an online
Applications Store.

In the same line of reasoning, the government has decided to impose compulsory open
standards and to create a level playing field for open source software. Paragraph 16 of the
Strategy provides that “where appropriate, government will procure open source solutions.
When used in conjunction with compulsory open standards, open source presents
significant opportunities for the design and delivery of interoperable solutions”.

To create the level playing field for the use of innovative ICT solutions, the government has
published a toolkit for procurers on best practices to evaluate the use of open source
solutions147, and which encompasses, amongst others, a general document explaining what
open source is148, an open source applications reference list detailing applications that can
be contemplated as options for the administration149 and guidelines on FOSS
procurement150. The latter only provide high level advice on how to ensure that open
source software is fairly considered when procuring an ICT solution. They underline the
inherent flexibility of Open Source as regards several requirements that should always be
considered when procuring software, such as the scalability of licence, the transferability of
software or the compliance with open standards.

The guidelines also explain that “where the software is free to use ‘gratis’ software and all
associated products are free for the whole of life use then there is no requirement to tender
the requirement for the licenses”. However, “(a) purchase of support and maintenance
procured separately from licenses will need to be tendered where it is expected that the
cost of support meets the EU thresholds and in accordance with any standing financial
instructions”.

144 Available at http://www.cabinetoffice.gov.uk/content/government-ict-strategy
145 This is confirmed by Linda Humphries on the Government’s blog, “Are open standards a closed barrier?”, 12
avril 2012, available at http://digital.cabinetoffice.gov.uk/2012/04/12/are-open-standards-a-closed-barrier/
146 The Government sets a presumption against government ICT projects valued at over £100 million.
147 Available at https://www.gov.uk/government/publications/open-source-procurement-toolkit.
148 “All about open source: an introduction to Open Source software for Government IT”, version 2, April 2012,
available at the same address.
149 “Open Source Software Options for Government”, version 2, April 2012, available at the same address.
150 “ICT Advice Note - Procurement of Open Source”, October 2011, available at the same address.

Workshop: Legal aspects of free and open source software
__

 81

The Strategy also includes the establishment of an Open Source Implementation Group, a
System Integrator Forum151 and an Open Source Advisory Panel152 to assist with the
deployment of agile153 solutions using open source technology and to educate, promote and
facilitate the technical and cultural change needed to increase the use of open source
across the government. It also envisages the creation of a ‘virtual’ centre of excellence
across the government and the private sector which can enable fast start-up and
mobilisation for such agile projects.

3.4.2 Results

Open source advocates such as the Open Forum Europe welcomed the UK Government’s
“determination to move the public sector in the UK away from being locked in to large scale
single supplier proprietary software solutions”154. Criticising the reluctance that
governments showed until then to consider open alternatives, the Open Forum Europe
expressed its yearning to observe concrete results: “it is in procurement that the Strategy
will either come alive or wither.”

In its report155 of May 2012, the government sets out the progresses achieved over one
year of implementation. As far as open source is concerned, the report only refers to the
publication of the procurement toolkit and confirms the establishment of the Open Source
Advisory Panel. An e-petition site, which has been built in 8 weeks on open source software
and using open standards, is reported as a success story. No other figure or example is
provided.

In its assessment of June 2012, the Institute for Government (an independent charity
helping to improve government effectiveness) does not report much more on concrete
results in open source adoption156. On the contrary, it stresses the ICT leaders’ view that
the focus should be on enabling the government to perform more effectively and not on
implementing the ICT strategy “in a tick box fashion”.

The press reported that the Strategy is largely lobbied against157, and that during a round
table event organised by the Cabinet Office, open standards opponents easily dominated a
meeting motion against the government’s open standards policy158. The definition of the
“open standard” concept is the crux of the tension. Reporting on the event, a
representative of the government observed that “the consensus was that the definition and
proposed policy would be detrimental to competition and innovation” 159.

This battle around open standards questions the sustainability of the Strategy in general
and seems therefore to also have a detrimental effect on open source adoption.

3.4.3 Features
 ACTION: Policy (Governmental Strategy)
 DECISION LEVEL: National
 ACTION LEVEL: National

151 See http://www.computerweekly.com/blogs/public-sector/2011/02/24/open-source-si-forum.pdf.
152 A list of the membres of the Open Source Avisory Panel has been communicated in the framework of a
parliamentary question, available at
http://www.publications.parliament.uk/pa/cm201011/cmselect/cmpubadm/writev/goodgovit/it65.htm.
153 Agile software development is a software development method where requirements and solutions evolve
flexibly through collaboration between self-organizing, cross-functional teams.
154See the OFE’s press release of 30 March 2011, http://www.openforumeurope.org/press-room/press-
releases/openforum-europe-welcomes-the-publication-of-the-uk-governments-ict-strategy.
155 “One year on : Implementing the Government ICT Strategy”, May 2012, available at
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/61950/One-Year-On-ICT-
Strategy-Progress.pdf.
156 “System upgrade? The first year of the Government’s ICT strategy Features”, June 2012, available at
http://www.instituteforgovernment.org.uk/sites/default/files/publications/System%20Upgrade.pdf.
157 G. MOODY, « UK Government Open Standards : the great betrayal of 2012 », Computer World UK, 22 December
2011, available at http://blogs.computerworlduk.com/open-enterprise/2011/12/uk-government-open-standards-
the-great-betrayal-of-2012/index.htm.
158 “Proprietary lobby triumphs in first open standards showdown”, Computer Weekly, 13 April 2012, available at
http://www.computerweekly.com/cgi-bin/mt-
search.cgi?blog_id=102&tag=BCS%20Open%20Source%20Speclialist%20Group&limit=20.
159 “Are open standards a closed barrier?”, op. cit.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 82

 OBJECTIVES: To foster the reuse of software across the administration.
To level the playing field for open source solutions.

 MEASURES TAKEN: Publication of a toolkit (set of guides)
Setting up expert panels and forums
Maintaining an asset register and an applications store
Operating a ‘virtual’ centre of excellence across government

 LICENSING: Not specified (“open source” is the term used).
 EFFECTIVENESS: There does not seem to be any important achievement so far,

but it seems also too early to draw conclusions.
Lobbies are actively opposing the adopted open standard
strategy, and the government seems open to reconsidering its
position. This situation also negatively impacts FOSS adoption.

3.5. Belgium: IMIO (inter-municipal company)
3.5.1 General presentation

IMIO (Intercommunale de Mutualisation Informatique et Organisationnelle) is a
government owned inter-municipal company that has been incorporated on 28 November
2011 (under the form of a limited liability cooperative company) by a partnership of ten
Walloon municipalities with the blessing and support of the Walloon Region160, which is the
supervisory and approving authority161 of the Walloon municipalities.

IMIO has not been created from scratch, as it is based on the previous “CommunesPlone”
project162, a collaborative “bottom up” approach which gathered many Walloon
municipalities aiming at gaining independence from IT services providers by developing,
essentially by themselves and in a cooperative manner, applications and websites for their
own use as well as for their citizens. The CommunesPlone community was composed to a
large extent of IT workers employed by the municipalities involved or by the SME’s
providing the services to the latter and to the public company. IMIO has taken over the
CommunesPlone project and pushed it further by providing an official, logistical and
incorporated structure.

The statute of the company provides that its statutory objectives are to promote and foster
the mutualising of organisational solutions and of IT products and services for the local
authorities of Wallonia. To do so, IMIO must either act as a central procurement agency
which will procure software via public tenders, or develop internally software applications
which are mutualised and distributed under a free licence. In the latter case, IMIO is
expected to manage a free software patrimony which must be coherent and robust and
which belongs to the public administrations. IMIO must ensure that it has internally the
technical control of the software, and that the latter will evolve, remain sustainable and be
distributed in compliance with the applicable free licence. The statutes further specify that
the company produces and mutualises, amongst others, Plone-based open source software
(Plone being a Content Management System licensed under the GPLv2).

The three main activities of IMIO are163:

 Producing (procuring, developing or procuring the development of) open source
software to meet the needs of local authorities (IMIO works also with a network of
open source SMEs)164;

160 In its Regional Policy Declaration of 2009-2014, the Walloon government has set as one of its objective to
promote the use of free software. See “Projet de Déclaration de politique communautaire 2009-2014”, available at
http://www.awt.be/contenu/tel/awt/declaration_politique_regionale_2009_2014.pdf.
161 “Autorité de tutelle”.
162 See the IDABC study « Networks effects : Plone for Belgium and Beyond », available at
https://joinup.ec.europa.eu/elibrary/case/networks-effects-plone-belgium-and-beyond-0.
163 More information is available at http://www.imio.be/presentation.
164 See the Joinup news “Walloon communities sharing software as an alternative to procurement” available at
 http://joinup.ec.europa.eu/news/walloon-communities-sharing-software-alternative-procurement.

Workshop: Legal aspects of free and open source software
__

 83

 Buying proprietary solutions in purchasing centres to provide solutions at lower
costs and a support service; and

 Formalising work processes for the local government.

IMIO provides its software and services to any municipality of the Walloon region, which
can become member of the project. Currently, it is partly financed by subsidies of the
Walloon region, and partly by the prices paid by the members for each “product”. These
prices are linked to the number of inhabitants of the municipality. The solutions proposed
by IMIO can be deployed on the infrastructures of their members or made available in
"SaaS Software as a Service" from IMIO’s infrastructure.

3.5.2 Results

IMIO has currently more than 180 members, amongst which more than half of the Walloon
municipalities (150 out of 262 – the 30 remaining members being other types of public
services such as public social action centres).

IMIO benefits from Walloon Region subsidies (1.2 Million Euro at its launch), but has
already reached a turnover of about 1 Million Euro in 2012. It is expected to become fully
sustainable within a few years.

According to Joël Lambilotte (co-founder of CommunesPlone and employee of IMIO) “the
IMIO initiative is successful and the results are better than what was predicted in the
business plan. The success comes from the “official” status of the organisation as a publicly
owned entity. A second success factor is certainly the experience gathered from the field
with the CommunesPlone project, whose debut dates back to 2005. The partnership with
many technological SME’s has also provided an undeniable advantage comparing to other
solutions available on the Market. These elements bring a very hands-on and bottom-up
approach to the global strategy”.

3.5.3 Features
 ACTION: Policy (joint action of several local PA)
 DECISION LEVEL: Local (Walloon region & municipalities)
 ACTION LEVEL: Local (Walloon municipalities)
 OBJECTIVE: To foster the mutualising of local administration software
 MEASURES TAKEN: Creation of a public company which

procures, develops, maintains, supports and mutualises
software for the local municipalities.

 LICENSING: Open source software (GPL is mainly involved)
 EFFECTIVENESS: The initiative seems successful and reaching its objectives.

It is too early to assess its sustainability.

3.6. France: Circular on the use of open source in the
administration

3.6.1 General presentation

On 19 September 2012, the French Prime Minister Jean-Marc Ayrault addressed a circular
to all the French ministers inviting them to implement the guidelines on the use of free
software in the administration165 prepared by the DISIC (Direction Interministérielle des
Systèmes d’Information et de Communication).

The guidelines start from the statement that “from now on, in order to meet business
needs, Free Software must be considered on equal footing with other solutions”. After some
introductory explanations on the basic features of FOSS and its licensing scheme, its model
based on services and its advantages in different contexts, the guidelines broadly describe

165 “Usage du logiciel libre dans l’administration”, annexed to the circulaire 56/SG of 19 september 2012, available
at http://circulaire.legifrance.gouv.fr/pdf/2012/09/cir_35837.pdf. An english translation made by the APRIL is
available at http://www.april.org/en/french-prime-minister-instructions-usage-free-software-french-
administration.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 84

eight inter-ministerial action lines aiming at facilitating the use of Free Software solutions in
the administration's choices and at levelling the playing field, while at the same time
achieving maximum economic efficiency and quality:

 Instituting an effective convergence on certain Free Software projects. A
convergence framework is established, which aims at selecting and focussing some
relevant FOSS that can be developed and reused in State information systems. Each
ministry must participate in its updating and progressive reinforcing.

 Activating networks of experts, which gather specialists from the different ministries
and aim at sharing expertises and competences. This includes the organisation of
inter-ministerial workgroups and public workshops and conferences.

 Improving Free Software support in a controlled economic context. The objective is
to centralise and to mutualise support and maintenance services amongst the
ministries.

 Contributing in a coordinated way to chosen free software projects. The government
plans to financially endorse Free Software development by systematically re-
injecting from 5 to 10 percent of the avoided licensing costs in the development
process.

 Keeping in contact with the large communities. “Just as software editors maintain
regular contact with all ministries, to update knowledge of their products, be able to
anticipate their changes, and even assess needs, it is essential to have links to large
communities such as the Mozilla Foundation or the Document Foundation. However,
as these foundations do not have a commercial approach, the logic is reversed. It is
the administration that must regularly contact them”, the document explains.

 Deploying credible and operational alternatives to the large software editors'
solutions. The aim is to identify and focus on credible alternatives and foster their
adoption.

 Mapping out use of FOSS and its impacts. Annual analyses on FOSS adoption should
be carried out and published.

 Developing a culture of use of Free Software licenses in the development of public
information systems. This last point acknowledges and aims at addressing the
“complex management of code ownership”. It provides that “the State must
safeguard its ability to release code in a manner that maximizes its own benefit,
regardless of which provider did the development. The State must therefore make
use, or prepare the use, of Free Software licenses, be they permissive or not,
depending on the context. It must also ensure that this freedom prevails vis-à-vis its
suppliers in every context that could lead to reuse, unless explicit additional costs
are generated”.

To achieve all these results, some concrete action lines are planed:

 a network of experts is established among lawyerss/purchasers involved
in the drafting of specifications and administrative clauses;

 specific training courses are set up within ministries: fast-track ones for
project managers and developers, more in-depth ones for lawyers and
buyers;

 provider liability clauses and obligations must also be added when said
providers use or develop Free Software code, and

 licence management must be one of the components of the explicit IT
governance within each ministry.

It is noticeable that, in order to add legitimacy to the guidelines, reference is made to the
Council of State’s decision of 30 September 2011166, which confirmed that a public

166 Conseil d’Etat, Decision n°350431 of 30 September 2011, available at http://arianeinternet.conseil-
etat.fr/arianeinternet/getdoc.asp?id=192208&fonds=DCE&item=1.

Workshop: Legal aspects of free and open source software
__

 85

administration can freely select a Free Software which is inherently « freely accessible, free
of charge and modifiable by any service provider » and procure customisation, installation
and maintenance services in relation to that particular software.

3.6.2 Results

Benjamin Jean (free software specialist and advocate)167 welcomes and appreciates the
relevance and clear-sightedness of the circular, but regrets the absence of the local
administrations, which could have also been involved in the sharing and mutualising
process.

The circular has been welcomed by the APRIL (French association for the promotion and
defence of free software) as good news, but the association underlines that this decision
from the French State is just a first step which needs to be further implemented. The
association notices that the document provides only high level guidelines that must be
further detailed and implemented by taking many concrete measures168.

3.6.3 Features
 ACTION: Policy (ministerial circular)
 DECISION LEVEL: National
 ACTION LEVEL: National
 OBJECTIVES: Levelling the playing field

Fostering the use and mutualisation of free software
 MEASURES TAKEN: Selection of a set of credible free software alternatives

Creation of expert networks
Free software monitoring
Contributing to Free Software development
Developing a culture of FOSS use

 LICENSING: Reference to “free software”

 EFFECTIVENESS: It is too early to assess the concrete results of the initiative,
which consist of high level guidelines.
The initiative requires an important implementation work that
remains to be determined and carried out.

4. OBSERVATIONS
What first strikes the observer when comparing the different cases described in this briefing
paper is the diversity of the initiatives. Whereas the logic lying behind them is usually
evolving around the same concerns and objectives, the adopted strategies and concrete
actions are very diverse in terms of scope, scale, means and ambitions. Furthermore, they
are not at the same stage of development and implementation. This, in addition to the
cultural and state structure differences, renders any meaningful comparison difficult.

All the initiatives aim at improving the public procurement practices and stem from the
observation that even though FOSS presents inherent characteristics that correspond to
good ICT governance principles, the option is not considered enough when choices are

167 B. JEAN, « Synthèse sur la publication par le Premier Ministre Jean-Marc Ayrault de la circulaire du 19
septembre 2012 présentant des orientations et des recommandations sur le bon usage des logiciels libres dans
l'administration française », 27 septembre 2012, available at
http://blog.vvlibri.org/index.php?post/2012/09/27/Synth%C3%A8se-sur-la-publication-par-le-Premier-Ministre-
Jean-Marc-Ayrault-de-la-circulaire-du-19-septembre-2012-pr%C3%A9sentant-des-orientations-et-des-
recommandations-sur-le-bon-usage-des-logiciels-libres-dans-l-administration-fran%C3%A7aise.
168 « Analyse détaillée de la circulaire Ayrault sur le bon usage des logiciels libres dans les administrations »,
APRIL, 8 novembre 2012, available at http://www.april.org/analyse-detaillee-circulaire-ayrault-sur-le-bon-usage-
des-logiciels-libres-dans-les-administrations.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 86

made. Raising awareness seems to be the first (explicit or implicit) objective, and effect, in
all cases.

The guidelines attached to the French Ayrault Circular are particularly interesting on that
aspect as they stress that one of the main causes of the lack of awareness of FOSS is the
fact that, contrary to proprietary software, FOSS is usually not the subject of ongoing
marketing and promotion practices. Therefore, FOSS and their communities should indeed
be actively monitored by the administrations’ procurement officers, and preferably by
dedicated open source experts. The importance of the active participation of the
administration IT staff in the community is also illustrated by the Belgian IMIO project,
which has been created on the top of a community of developers (CommunesPlone)
composed to a large extent of IT workers employed by the municipalities involved or by the
SME’s providing the services to the latter and to the public company. IMIO is therefore
entirely integrated in the community and is one of its main actors.

Part of IMIO’s success is also due to its bottom-up organisation, which embraces the
“traditional” open source ways169. It has been created by the municipalities for the
municipalities, on the basis of a general observation: on the one hand, each one of them
disposes of very limited budgets and resources to procure or develop specific management
tools, CMS, websites, e-Gov platforms; on the other hand, they all share the same needs.
The municipalities realised that pooling resources to develop a pool of common software
was therefore the natural way to address the issue.

This approach is very different from the NOIV program, the French Circular, the UK
strategy or the legislative approaches, which are typical of top down governance. In such
type of initiatives, any factor of resistance to change must be carefully analysed and
integrated in the strategy. A good strategy should include an awareness phase and,
according to Paapst, a subsequent persuasion phase with four dimensions: a legal
dimension, a technical dimension, a financial dimension and a subjective
“knowledge/experience” dimension. Within this subsequent phase different elements
influence the degree of willingness to adopt and use a new strategic IT policy in any of the
four identified dimensions. According to Paapst, a reason why the NOIV has not been as
successful as expected is that “for instance the mere use of the legal instrument (e.g. the
European procurement guidelines) is not enough to change behaviour and to
counterbalance negative influences coming from within the technical dimension and the
experience/knowledge dimension”170. By welcoming the Italian initiative with caution, Piana
& Aliprandi confirm Paapst’s theory: purely financial reasons are equally not enough to
ensure a successful migration to FOSS171.

Once a public administration is aware and convinced that FOSS is good for its ICT, it can
draw many teachings from the experiences analysed in this briefing paper.

Even before considering a call for tender, there is a consensus amongst the authorities
involved that downloading FOSS free of any charge or compulsory fee can be a valid means
of acquiring software without the requirement of a competitive bidding172. Once the FOSS is
selected and downloaded, paid services and support for such software can be acquired via
the traditional public contract process. Such method has been validated by the French
Council of State.

In the framework of a call for tenders, the Italian Constitutional Court teaches that the
concept of FOSS is independent of any given technology, brand or product but refers to a
contractual regime that can be preferred without damaging competition. References to the
concept of free and open source software are therefore always legal (contrary to the use of

169 E. RAYMOND’s “The Cathedral and the Bazaar” describes the bottom-up software design approach of the Linux
community. It is available at http://www.catb.org/esr/writings/homesteading/.
170 M. PAAPST, Barrières en doorwerking : Een onderzoek naar de invloed van het open source en open standaarden
beleid op de Nederlandse aanbestedingspraktijk, PhD thesis defended on 10 January 2013, available at
http://irs.ub.rug.nl/ppn/353037710.
171 Idem.
172 This is also confirmed in the European Commission’s IDABC programme’s “Guideline on public procurement of
Open Source Software” of March 2010, available at http://joinup.ec.europa.eu/sites/default/files/OSS-
procurement-guideline%20-final.pdf.

Workshop: Legal aspects of free and open source software
__

 87

trademarks or specific technologies that should be, as a general rule, banned).

The NOIV’s examples of award criteria are a good source of inspiration, as they make use
of terms, concepts and objectives that are as neutral as possible. In contrast, it is
interesting to note that the explicit reference to the EUPL by the Spanish interoperability
framework has been source of discomfort for FOSS-based IT providers, given that a vast
majority of open source applications are available under other licences (mainly of the GPL
family) that do not allow relicensing under EUPL. Fortunately, the law explicitly allows the
use of other licences, and one must hope that Spanish administrations carefully and wisely
assess the necessity to specifically require the EUPL173.

The current public procurement regulatory framework seems therefore not to constitute, as
such, a hindrance to the adoption of FOSS by administrations. It provides ways to develop
practices that aim at levelling the playing field or preferring the procurement of FOSS, if
there is a will to go in that direction. The analysed cases illustrate that this last condition is
probably the one that requires the most attention: whereas the policy shapers are aware of
the advantages of FOSS, policy takers show different degrees of resistance, which is
motivated by multiple factors that must be duly analysed and taken into consideration, and
that are sometimes overlooked.

Passing laws could be contemplated as a means to override the resistance effect thanks to
the compulsory nature of the instrument used. The Spanish and Italian experiences
illustrate, however, that such exercise is complex, as the adopted law is likely to interfere
with copyright, competition or procurement laws and principles. The law must therefore be
cautiously drafted and should not damage competition nor result in a technological
stagnation.

The Spanish law is quite astonishing as it is drafted in a way that it allows administrations
to share software using FOSS licences. Besides the symbolic aspect of this explicit
authorisation, one would tend to wonder what concrete change is brought by such law to
the general regulatory framework: would such FOSS licensing practice not have been legal
anyway without such positive statement? Furthermore, a devil’s advocate would even argue
that the Spanish law restricts FOSS licensing practices in administrations as it seems to
impose the use of copyleft licences. On the one hand, such requirement restricts the
spectrum of possible scenarios (as copyleft can generate compatibility problems in
heterogeneously licensed developments)174, whereas on the other hand, it implies the use
of licences that must be handled with more care (as copyleft usually entails more
obligations to comply with). In contrast, the Italian law considers FOSS as a self-justifying
criterion (whereas the choice of proprietary solution must be specifically explained) but it
does not further require a specific type of FOSS licence.

173 On this regards, see the ISA programme’s “Standard “sharing and re-using” clauses for contracts”,
https://joinup.ec.europa.eu/sites/default/files/ISA_Share_Reuse_D_2%201%20Standard%20Sharing%20and%20
re-using%20clauses%20for%20contracts_final%20version.pdf.
174 PH. LAURENT, “Free and Open Source Software Licensing: A reference for the reconstruction of “virtual
commons?”, op. cit.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 88

ANNEX: COMPARISON TABLE

Dutch
NOIV

Piedmont
Region’s Act

Spanish
NIF

UK
Government
ICT
Strategy

Walloon
IMIO

French
Ayrault
Circular

Action

Policy

Legislation Legislation Policy Policy Policy

Decision
level

National Local National National Local National

Action level

Any level Local Any level National Local National

Objectives

Awareness

Level playing
field

Preference

Preference

Reuse of
software

Reuse of
software

Level playing
field

Software
mutualisation

Use and
mutualisation
of FOSS

Level playing
field

Measures
Taken

Promotion

Support office

Guidance &
Support

Guidelines on
award criteria

Law
establishing
procurement
rules

Authorisation
to use FOSS
licences

Obligation to
reuse

Technology
transfer
centre

Toolkit
(guidelines)

Expert panels

Asset
registers &
app. store

Centre of
excellence

Creation of
an inter-
municipal
public
company

Selection of
credible free
software
alternatives

Expert
networks

Free software
monitoring

Contribution
to FOSS
development

“Culture” of
FOSS use

Licensing

Open Source

EUPL
considered

Free Software

EUPL (default
licence)

Other
copyleft
licences

Open Source

Open Source

GPL mainly
involved

Free Software

Effectiveness

Objectives
not reached

Law in
application

Court
validation

Awareness

Reuse

Some
positive
discrimination

The strategy
is lobbied
against

Too early to
draw
conclusions

Objectives
reached
so far

Too early to
draw
conclusions

Philippe Laurent is Senior Researcher at the CRIDS (Research Centre - Information, Law and
Society of the University of Namur) and Lawyer at the Brussels Bar (Marx Van Ranst Vermeersh &
Partners). As a researcher, Philippe mainly studies intellectual property licensing, data and software
protection, copyright limitations, open source and open content schemes, cloud computing and the
governance of the Internet. He wrote several reports and articles on open source licensing and is
currently working on the development of a local FOSS expertise centre. Philippe’s work as attorney-
at-law focuses on intellectual property & IT law, data protection, trade practices, distribution
agreements, advertising, as well as on broader commercial law matters. Philippe is also appointed by
the CEPANI as Third-Party Decider for ".be" domain name disputes and is alternate member of the
copyrights and neighboring rights section of the Intellectual Property Council of the Belgian Ministry of
Economy.

Workshop: Legal aspects of free and open source software
__

 89

Legal aspects of free and open source software in
procurement: the example of the City of Munich

Oliver Altehage, Kirsten Böge & Dr. Jutta Kreyss

CONTENT

1. ORIGIN AND ORGANISATION OF THE LIMUX PROJECT 89

2. STAKEHOLDER MANAGEMENT IN THE PUBLIC SERVICE 90

3. STAKEHOLDERS IN THE LIMUX PROJECT IN THE CAPITAL OF
BAVARIA, MUNICH 92

4. LEARNING THE LESSONS OF THE PROJECT TO DATE; PROSPECTS
FOR FURTHER DEVELOPMENT 98

5. BIBLIOGRAPHY 100

1 ORIGIN AND ORGANISATION OF THE LIMUX PROJECT
Bavaria’s capital, Munich, recently finished an IT migration project regarding its clients. In a
project like this, the focus is often on the technical aspect, while the cultural and human
dimensions are neglected. Yet an IT project on such a large scale requires a holistic
approach, taking into account the organisational preconditions, political factors, individual
habits and the cultural specificities of a large public-service organisation (Theuvsen et al.
2010). A holistic approach is built around comprehensive stakeholder management, which
means strategic planning of relations with the project’s main stakeholders. It is thanks to
shrewd cooperation with the main protagonists, such as the City Council, Staff Committee,
management and also the open source community, that in 2012, a good nine years after
the LiMux project began, and despite all the imponderables, the project was successfully
finished. It is thanks to its solid relations with the principal stakeholders that the project –
often referred to as a ‘flagship’ project175 – has the requisite stability.

Before a full description of all the stakeholders, it seems helpful to provide a few key data
about the project.

The aim of the LiMux project was to migrate all the approximately 15 000 PC work stations
present in 11 business units and 4 municipal undertakings to an open source-based,
standardised and consolidated system. To put it precisely, all the PC work stations used by
the administration of the City of Munich are to be equipped with Open Source office
systems and at least 80% of all PCs are to run on a Linux-based operating system.

The LiMux project was intended to progressively eliminate the legacy of dependence on
proprietary products and in the long term attain the desired flexibility of software and
architecture. As a rule, although using products tailored to one another which are available
from a single producer is convenient in the sense that functions can be used in common or
(proprietary) file formats can be used throughout the organisation, there are also

175 ’Flagship project’ is a term used to describe an exemplary project which, in addition to fulfilling
its particular purpose, is also intended to set an example which can be followed by numerous subsequent projects.
Apart from success, therefore, the aim is to ensure that the project is widely known.
(http://de.wikipedia.org/wiki/Leuchtturmprojekt, 16.11.2011)

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 90

drawbacks because this makes it significantly more difficult to replace these products, the
easiest option then being to purchase further products from the same manufacturer. This
gives rise to costs and dependences which could have been avoided. Ultimately, this
significantly restricts freedom of choice of appropriate IT systems within an organisation.
Moreover, the LiMux project is seen as a blueprint for the project culture approach to be
adopted in future IT projects.

The approach adopted by Munich City Council in 2003 was based on three fundamental
decisions:

1. to introduce a free, open-source operating system, including office communications
based on open standards for all work stations;

2. that in the future all specific administrative procedures should be acquired or
developed as being platform independent;

3. that a standardised IT platform with consolidated applications and databases should
be used. When the project began, there were 21 IT business units, more than 1000
applications, some of which were redundant, innumerable versions, no uniform
template system and, apart from a central LDAP - Lightweight Directory Access
Protocol - server, absolutely no standardisation throughout the city.

In the early summer of 2005, the work station migration project was then launched.

As of December 2011, all staff was working on their PCs with the free office communication
products OpenOffice.org, Firefox and Thunderbird, and more than 9 000 work stations have
migrated to the Linux-based operating system.

This makes Munich the biggest public-sector open-source project in Germany with high
visibility. This would already be a sufficient reason to write about it. But the aim of this
note is also to describe it from a particular point of view, with reference to the significance
of important stakeholders in the project. What contribution are politicians, management,
staff or the open source community making to the success of the project?

2. STAKEHOLDER MANAGEMENT IN THE PUBLIC SERVICE
The term ‘stakeholder’176 is derived from the word ‘stake’, which can mean an asset risked
in gambling or an investment or interest in a business. ‘Holder’ meanwhile refers to the
person who owns or possesses it. ‘Stakeholder group’, or simply ‘stakeholders’, is a good
way of referring to the main parties with an interest in the LiMux project.

With the focus on the relevant stakeholder groups, the desire arises for successful ‘relations
management’. How can one communicate with the main stakeholder groups in a manner
which they appreciate, and how can those relations be successfully maintained?

According to the definition provided by ISO 10006 (http://www.iso.org), stakeholders in a
project are all those who have an interest in the project or are affected by it in any way.

A distinction is made between active and passive stakeholders (Freeman 1984). Active
stakeholders are directly involved in working on the project (e.g. team members) or are
directly affected by it (e.g. users, suppliers, business management).

Passive stakeholders are only indirectly affected by the implementation of the project or by
its effects (e.g. representatives of interest groups, associations, etc.).

Moreover, each project has its specific stakeholders, whose significance needs to be
established by means of a force field analysis (Lang 2010). In such an analysis, various
interests and attitudes of relevant groups can be analysed to create a portfolio:

176 For the concept ‘stakeholder’, see
http://wirtschaftslexikon.gabler.de/Definition/anspruchsgruppen.html

 i

 a

In orde
betwee

The out
develop

How ex

The Y a
In oth
decision

The X
project.
strongly

Figure

From th
charact
promot



influence o

attitude tow

er for a pro
n the indiv

tcome of th
ping a role-

xactly shoul

axis indicate
er words,
ns/instructi

axis clarifi
. I.e.: how
y does it su

: Matrix of

he combina
teristic prof
ers.

Stakeho
with reg
adminis

n the proje

wards the p

oject to be
idual stake

he stakeho
based stru

ld the stake

es how infl
 how ma
ons?

ies what a
w valuable
upport the a

f the analy

ation of the
files: those

olders who
gard to the
stration.

ect (power a

project (com

 successfu
holders and

older analys
ctural mod

eholder gro

uential a st
ny other

attitude the
does it co
aims of the

ysis of the

e respectiv
e who expr

 express no
e aims of t

Works

91

and influen

mmitment

l, it is ther
d the proje

sis is the b
el, the com

oups be sys

takeholder
people he

e same st
onsider the
e project?

e lines of f

ve axes, a
ress no opi

o opinion: t
the project

shop: Legal as

nce from ab

to the aims

refore impo
ect.

basis for pl
mmunication

stematised

 group is in
ear and a

akeholder
 performan

forces

figure can
nion, fellow

they do not
t, and have

spects of free

bove)

s of the pro

ortant to k

anning reg
n plan and

and positio

n the capita
act on its

group has
nce of the

be drawn

w campaign

t commit th
e little influ

 and open sou

oject).

know the re

gular comm
 much else

oned?

al of Bavari
s recomme

s towards
 project to

which iden
ners, oppo

hemselves e
uence with

urce software

elationship

munication,
 besides.

a, Munich.
endations/

the LiMux
o be? How

ntifies four
onents and

either way
in the city

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 92

 Fellow campaigners: these are people who are strongly committed to the aims of
the project, but at the same time have limited influence over other stakeholder
groups within the city administration.

 Opponents: these are influential stakeholders who actively oppose the aims of
the project.

 Promoters: a group who is wholeheartedly working to make the project a
success, even in the face of resistance within the city administration.

At the beginning of virtually any major project affecting a whole organisation, the various
stakeholder groups are in a ‘neutral’ zone vis-à-vis the aims of the project. Only in the
course of the first few months do the stakeholder groups decide what position to adopt.
The aim of successful stakeholder management is to turn the stakeholder groups into
protagonists bearing a shared responsibility. The extent to which the core team and the
principal stakeholders of the LiMux project in Munich have managed to achieve this will be
indicated below.

3 STAKEHOLDERS IN THE LIMUX PROJECT IN THE

CAPITAL OF BAVARIA, MUNICH
The following list of stakeholders is based on the history and administrative structure of
Munich. It is not definitive, nor could it be, but rather only contains a representative
sample, looking at the situation from a temporally defined angle. All the stakeholders listed
are described with reference to the measures and finally positioned in a force field portfolio.

3.1 The project team: the starting point for all stakeholder groups
The LiMux project team comprises a core team and an extended project team.
The core team consists of approximately 25 people who are working on the development
and provisioning of the LiMux Client, Support for the Open Office Components such as
OpenOffice, Thunderbird and Firefox, including the conversion of forms and macros, as well
as the further development of, and support for, the WollMux (document and template
system177), with support from external service-providers. The core team is organised into
smaller groups dealing with or identified as:

 Management of requirements,

 Development of the LiMux client (excluding Office),

 Development of the office and WollMux components,

 Migration support and incident management,

 Test management,

 Release management and architecture, and

 Change & communication combined.

The core team is managed by the project management and the project office and the
technical lead.

The extended project team consists of numerous colleagues from the migration fields, who
decide about the requirements in their respective fields, report on the migration and
provide day-to-day support for users. This extended project team is regarded as an
independent stakeholder group in the description of the project (IT managers and IT staff).

It took nearly three years to put together the LiMux core team, and in the course of the
project the form taken by the team has changed, just as in the past three years the
organisational parameters have changed radically. In parallel with the migration of work

177 WollMux was developed, in the framework of the LiMux project, as an extension of OpenOffice.org and is now
being used in more and more municipalities to work with templates, forms and letterheads (www.wollmux.org).

Workshop: Legal aspects of free and open source software
__

 93

stations to a LiMux Client peculiar to the city administration, a large part of the IT of the
city administration has been transferred to a municipal undertaking, IT@M, with took effect
from 1.1.2012. And it is precisely for the reorganised Munich IT that the LiMux project is to
provide a standardised, open source-based modern IT platform.

One guarantee of success has been the continuity of staffing in the ramp up and migration
phase. There have been particularly few changes among the technical staff in these phases.
That has been very important, because as a result of the migration to open source-based
work stations, the organisation’s own responsibility for developing and operating the
system is constantly increasing.

The core team is therefore the nucleus of the overall project, i.e. all its strategic and
operational decisions have a direct impact on the success of the project. For that reason,
we regard it as the prime mover of the project and the origin of its success. Many members
of the core team came to the city specifically to work on the project, and, even if they do
not regard themselves as open-source evangelists, they do see themselves as promoters of
the open source community.

3.2 The City Council: the legal and legitimating authority
The LiMux project initially made it at least into one or two headlines. USA Today even
reported the decision by Munich City Council on its front page178. Thus, from the outset, the
project had a high profile in the media. The Social Democrats and Greens cited Linux in
their municipal election campaigns with reference to the concept of freedom, which worked
well as advertising. In 2003, 2004 and 2007, the City Council took the main decisions in
favour of the project, in some cases with cross-party support; additional decisions have
been necessary because the project has been kicked of in 2003, a detailed concept has
been finished in 2004 and the budget had to be modified in 2010. In its 2004 decision, the
City Council even approved project funding in excess of what had been requested, and
expanded the aims of the project. In accordance with the importance thus attached to it,
the Deputy Mayor was immediately assigned organisational responsibility for the project.

The controlling political majority is both a fellow campaigner for the project and its sponsor.
Even if occasional criticisms of the open source strategy are voiced, the City Council is
standing by its decision and bolstering that strategy.

The governance structure is one of the reliable factors in the project. The guidelines for the
project are brought into line with the guiding principles of the policy pursued by the
controlling majority. This gives the project the requisite legal basis and at the same time
imparts political legitimacy to its aspiration to act as a ‘beacon of independence’. This
strong backbone is needed for a project so sensitive to the type of media cover it receives
(see Section 3.10 on the public as a stakeholder).

3.3 An open and supportive Staff Committee
Under the Bavarian Staff Representation Act, the Public Service Staff Committee possesses
extensive responsibilities, rights and obligations. It is the dialogue partner for staff and
management with regard to such topics as the staff establishment and promotions,
equipment in the workplace, cooperation with staff and staff satisfaction. Whenever major
changes are planned in the workplace, it is necessary to consult the Staff Committee at an
early stage, which is required not only by law but also in the interest of cultural fairness.

The Staff Committee was invited to participate at an early stage, even while decisions were
being prepared overall and preliminary studies drafted. The business unit Staff Committee
and the overall Staff Committee were kept informed from the moment when the idea was
first mooted until the migration was planned, and were also invited to deliver opinions.
Project aims and procedures were presented and debated in all decision-making bodies of
the Staff Committee. The initial city-wide introduction of an e-learning system was
discussed particularly intensively, resulting in an agreement with the Umbrella Staff
Committee. Subsequently, the ‘LiMux World of Learning’ was devised, which in 2007

178 Byron Acohido, USA TODAY, 13.07.2003: http://www.usatoday.com/money/industries/technology/2003-07-
13-microsoft-linux-munich_x.htm

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 94

received the Eurelia Award for an innovative and employee-friendly IT platform. It
supplements the numerous training measures accompanying the migration and the new
workplace software solutions.

3.4 The IT high level management team: a bastion of strength in
times of disunity

Leadership is what matters – or at least, that is the conventional wisdom. In the LiMux
project, it is the IT high level management team that is particularly vital. The team is a
bastion of strength in the project. Derived from the above-mentioned governance model,
the whole management and leadership team supports the aims of the project. From the
Deputy Mayor, via the Director and IT Supervisor of the City of Munich, the Divisional Head
within the Directorate and works manager of the municipal undertaking IT@M, and an
Advisory Board, to the project leader, everybody is convinced that the project is feasible.

The establishment of regular communication, however, involved a few learning curves. Up
to reaching the project’s objectives, bimonthly steering committees, monthly reporting
deadlines with the IT Supervisor and weekly meetings with the immediate management
ensured that, within the administration, the necessary attention was paid to developments
in accordance with the aims. If problems arise, a mentor provides the necessary support.
The involvement of the business units heads at the highest level is arranged by means of
needs-based reports at the weekly reporting sessions by the Deputy Mayor and/or the IT
Supervisor of the City of Munich.

The perseverance of the management hierarchy secured the project at the times of
greatest peril.

The IT management team is the promoter of the project, and always keeps an eye on the
practical constraints of the business units and municipal undertakings.

3.5 The role of IT managers as driving forces and opinion formers
Such a far-reaching project – affecting every single work station – requires excellent
cooperation between the core teams and the migration fields. It is at this interface that the
unit project leaders within the business units are located. Much effort was required in
order to define specifically the roles of the unit project leaders in the respective migration
fields and then for the relevant business unit heads to appoint staff to these posts. From
the outset, this stakeholder group gave considerable impetus to the project in the form of
critical, but always constructive, observations. Here, as in the case of the technical
managers (see below), it was necessary to drive cultural change by introducing an open
source strategy in the face of some resistance. The role of the unit project leaders is central
to the success of the project, because they bear operational responsibility for the migration
in their own fields. Today, the unit project leaders are at least fellow campaigners for the
new IT Strategy, if not indeed promoters of it, even if they always continue to criticise,
because their whole objective is the smooth provision of services by the City of Munich to
its citizens.

This change of attitude has been assisted by a series of measures:

 An initial strategy at the beginning of the project helped to dispel any doubts.

 Visibility of the IT managers to the steering committee and also to politicians
accentuates responsible action.

 The monthly meetings between all the unit project leaders are the main platform
for exchanges among them and have now also become an important medium of
communication with representatives of competing interests elsewhere.

 Support from the migration coordinators in the planning and preparation of the
migration is an early guarantor of quality and commitment.

 The introduction of release and test management, partly at the recommendation
of the unit project leaders, has substantially improved the reliability of our own
planning and of the LiMux-Client.

Workshop: Legal aspects of free and open source software
__

 95

 Support for internal communication from the LiMux core team helps managers
whose skills are primarily technical to deal securely with ‘soft topics’.

 In addition there is the experience that the LiMux-Client is working well on an
everyday basis.

The IT managers and the technical leaders take on the role of central opinion formers and
ensure that the migration is sustainable in their field.

3.6 IT staff: the ‘initial hurdle’ for the project
One of the first hurdles for the project was the involvement of IT staff in the migration
fields. In some business units, it proved possible to persuade this stakeholder group of the
merits of the project at an early stage. In other business units, on the other hand, there
was some ‘passive resistance’, which could only be overcome in the course of the project.
This resistance arose from loyalty to the familiar, locally optimised solution as against the
central, city-wide LiMux configuration.

These IT staff have the role of technical managers within the project and act as the direct
contacts of staff in the core team. Their tasks are as follows:

 to define the requirements with respect to the LiMux-Client,

 to act as test coordinators and receive the new versions of the LiMux-Client and

 to carry out the migration on the ground from the organisational and technical point
of view.

The constant improvement of the LiMux-Client, the standardisation of server and
administration tools, necessitated by the reorganisation to it@M, has played a decisive role
in the growing acceptance of the open source strategy and solution. Increasingly, it is
proving possible to turn this stakeholder group completely into fellow campaigners by
means of:

 technical support for the migration on the ground by the core team,

 involving them in training and workshops and

 equipping them with the requisite know-how to act as administrators and user
support officers.

3.7 Management: a difficult target group to gain access to
The LiMux project did not succeed in gaining direct access to the stakeholder group made
of managers of the business units and their IT managers. Involving them was the task of
the unit project leaders, but they were not equally successful everywhere. In many
respects, this is highly regrettable, because on the one hand it denied the unit project
leaders possible support in convincing other staff and on the other hand it meant that
managers did not always act as positive role models for staff as one might have hoped.

Ultimately this was expressed in the form of:

 in some cases, excessive demands postulated by managers,

 failure to take delivery of the system,

 silent protests among staff and

 avoidable escalations above business unit head level.

The reason for this gap in the stakeholder approach is the lack of involvement of managers
in roles and/or in regular communication. Efforts were made to overcome this problem by
means of occasional visits to the regular management meetings.

From the point of view of stakeholder management, this stakeholder group adopts a
position between ‘expressing no opinion’ and ‘obstruction.’ In addition, however, some
managers opened up their minds for Open Source technology and used it not only when
they were ordered to.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 96

3.8 Ultimately it is the staff who make or break the project
The introduction of LiMux as a workplace system results in changes to the working
environment for many staff. This confronts the City of Munich’s staff with changes which
entail uncertainties and grounds for concern. This concern is fed by two sources. On the
one hand, the changes temporarily involve efforts, while on the other hand changes tend to
generate uncertainties.

The temporary efforts arise from the fact that unfamiliar working procedures, or the same
procedures carried out using unfamiliar programmes, simply take more time than those
which have already become routine. Moreover, the know-how enabling staff to optimise
their own work has to be built up afresh in the new environment. In view of the high
workload to which staff are subject, one can understand their concern.

Changes, like anything else new, are viewed critically, which is hardly surprising: every
business or large organisation experiences similar phenomena when it comes to replacing
familiar things with something different whose advantages may first even have to prove
their value before they can be accepted. Here, firm belief and perseverance are needed.
Initially, many people reject the innovations, because change may make the professional
future seem uncertain. But what ultimately matters is confidence and acceptance on the
part of staff. Without their support, successful implementation would be inconceivable.

An important message to IT staff had to be that IT development and the migration to the
new office suite and to the LiMux system are not an end in themselves but yield
demonstrable benefits. Staff must be involved. It is therefore vital to generate acceptance
of the changes. That will not happen automatically: it requires active support in an ongoing
process.

In order to take this into account, the migration is being accompanied by management of
change (to give it its full title, ‘management of change and communication’: see also
Section 3.1, ‘The project team: the starting point for all stakeholder groups’). This involves
two team members from the project management level who are specifically working on
internal and external communication (see also Section 3.10, ‘PR work: a two-edged sword’)
and support in the process of change.

On an everyday basis, this can mean that, long before the migration, info tours are already
being made through the relevant fields, which entail users and IT staff alike receiving
information about the impending changes. Shortly before the migration, moreover, further
meetings are held in some fields, which receive support from the ‘management of change
and communication team’ or also, occasionally, from the project management on the spot,
jointly with the IT staff. In addition, when further meetings are held, those who have this
responsibility repeatedly drop in or participate in working parties/regular discussion days
where, as a rule, the IT staff from all migration fields are represented.

The LiMux team can be contacted quickly by e-mail, using an internal communication
address, and will also on occasion be present at one gathering or another. Mostly, however,
contact is maintained by means of exchanges with the relevant LiMux communication
officers in the fields.

The team „Migrationsunterstützung vor Ort“ (Migration Support on the Ground), with its
acronym MUV, supported the migration fields from the technical point of view on the
ground: in order to prepare for the migration, MUV invested two days of preliminary work
in the offices of the business unit concerned. If there are questions or problems after the
migration, the team again goes to the scene and helps to find solutions. In addition, there
are regular review deadlines.

Enormous value is attached to the training of staff: during the migration, first of all the IT
service staff and IT user advisers are trained, after which they are constantly updated
about the latest situation. They then become multipliers and ambassadors for the end user,
as they are the initial contact and trusted individual. If the migration has the support of
those in charge of IT services with the support of the business units, their staff will mostly
go along with it. Each employee of the city of Munich was also entitled to half a day’s
training with the new operating system and up to a day for the Office package. For those

Workshop: Legal aspects of free and open source software
__

 97

who wish to gain more in-depth knowledge, there is the ‘LiMux-Lernwelt’ for individual
study.

The LiMux brand is always to the fore. With the penguin Tux, the mascot of the free
operating system Linux, LiMux has its recognisable identity at every meeting. The penguin
soft toy, customised with the Munich ‘Kindl’ coat of arms, helps people to identify with the
product and with the LiMux brand, and other small merchandise such as LiMux desk pads is
well received and creates a little bridge to the end-user, thus assisting identification with
the new system.

Of course it is advantageous if one can manage to turn the bulk of the staff into fellow
campaigners too. But it is already sufficient if one ultimately succeeds in persuading staff
not to adopt a hostile attitude towards the new work station but simply to accept it as an
aid in the ongoing provision of services to the public. The most important point for the staff
is that the LiMux client provides the appropriate business functionality and stability. This is
guaranteed by the LiMux Client. Therefore, the client is accepted.

3.9 The open source community: a reliable fellow campaigner and
developer

Whether it is through the voluntary cooperation in the further development of open office
communication suites or the organisation of developers’ days, the commitment displayed in
associations which support the open file format is a wholeheartedly espoused principle of
the open source approach.

Munich is a pioneer in the large-scale use of open-source software, but it is also active in
the further development of that software in the context of associations such as
OpenOffice.org or its independent continuation: LibreOffice. It gains much in return for
this:

The open-source community is large and closely linked. From time to time, meetings are
held, which are not at all virtual but physical. For example a ‘hackers’ party’ or a ‘bug-
squashing party’, where developers from all over the world meet and devise solutions to
specific problems with programmers from the LiMux project. The result is then
amalgamated with the software solutions.

There is also increased cooperation between IT staff representing various public institutions
to deal with compatibility issues across the board. Examples include the OOXML Workshop
of the Swiss Open Systems User Group (http://www.ch-open.ch), in which, in addition to
Freiburg, Jena, Munich and the Swiss Federal Court (among others), various community
organisations and a representative of Microsoft also took part. Work packages were
adopted to improve support for the standard developed by Microsoft for its OOXML file
formats. The workshop represented an important step forward in cooperation between
municipalities. The features to improve interoperability are implemented and available
starting with Libre Office release 3.6 and were further improved with Libre Office release
4.0.

The LiMux project is an active member, or at least contributor to the following groups,
among many others: the OSBA (Open Source Business Alliance e.V.), FrODeV (Freies Office
Deutschland), OpenOffice.org, LibreOffice, TDF (The Document Foundation), FSFE (Free
Software Foundation Europe).

Fruitful exchanges are organised by means of mailing lists, for example concerning the
template system WollMux developed by LiMux itself, and concerning Ubuntu (a free and
open source operating system) and other open-source projects. WollMux was developed as
an extension of OpenOffice.org and is now being used in more and more municipalities for
work with templates, forms and letterheads (www.wollmux.org).

The open source community is in a twofold sense a readily accessible source of strength for
a project such as LiMux: without the uncomplicated and rapid support of the community, a
project of this kind would not be feasible. The selfless, uncommercial attitude of the open
source community to sharing knowledge and know-how is the guarantor of the success of
the whole open source movement.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 98

3.10 PR work: a two-edged sword
Successful internal and external communication (see also Section 3.8, ‘Ultimately it is the
staff who make or break the project’) also requires PR work. This includes contacts with the
press, involving interviews, podcasts and articles, as well as participating and speaking at
trade fairs and congresses. Talking about the subject and reporting on it are part and
parcel of this. Staff have a right to expect it, and an interest in seeing how the project is
viewed and assessed by the public. They, after all, are also part of the project and should
be informed about the impression that the ‘flagship project’ is making on other interest
groups. Thanks to transparency regarding the progress of the project, other municipalities
may perhaps feel inspired to consider migration. That is also the intention of the project: to
organise exchanges and gain fellow campaigners. If the EU institutions were to be
convinced to opt more for open source technology in future, it would help if the public were
behind it too.

PR work naturally also gives rise to expectations and leads to new challenges: press work is
difficult to control, as an editor – an independent authority – may intervene. It may
sometimes be difficult to influence the nature of the publication, which means that it soon
becomes necessary to issue corrections, which take up time and energy that would
otherwise be available for other developments. A posting on the city’s IT blog or on the
professional blogs of various online IT platforms will elicit all manner of comments. It is
therefore vital to be vigilant in monitoring the news.

While public exposure opens one to attack, it is clear what advantages can accrue to the
project from providing information. LiMux therefore has an up-to-date presence not only on
its own staff website but also on the public Munich Portal (www.muenchen.de/limux and
www.it-muenchen-blog.de). The annual goals and milestones of the project are also
indicated there. Contributions on Wikipedia are kept up to date and contacts with other
municipalities are gradually being established and strengthened.

A measurable result of this public profile can now be seen in the form of the substantial
numbers of requests which have been received from associations or towns seeking support
in deciding to migrate to free software. Again and again, the LiMux project team is
sounding out possibilities of further propagating the open source idea. For example, it plans
– jointly with those who run the city – to lobby more fervently for the adoption of an EU
directive on the exclusive use of open standards. In future, other urban partners will also
be invited to cooperate more. In other words, lobbying also forms part of PR work. In
addition, the city of Munich hosted its first public Open Source event in the city hall at the
20th and 21st of June 2013. Agenda and presentations are available for download on
www.muenchen.de/opensourcetage. The event was held in German.

The social media are not yet playing a major role, because here too, it is necessary to act
effectively and to make the right impression: otherwise, far from producing added value,
these media will lay the authority open to further attacks. And, as everywhere else, in
Munich too resources are at a premium.

Openness calls for transparency, and transparency is always a basis for acceptance. As
acceptance is ultimately what matters, there is no alternative to open communication. The
general public constitutes a diffuse stakeholder group, which cannot be assigned a blanket
position in the force field analysis. Rather, it is necessary to consider the individual
subgroups separately and to communicate with them in a targeted manner.

4. LEARNING THE LESSONS OF THE PROJECT TO DATE;
PROSPECTS FOR FURTHER DEVELOPMENT

Such a far-reaching IT transformation process, requiring acceptance, as the one that took
place in Munich, is only possible if vital stakeholder groups cooperate (Moser 2007).
Stakeholder management has ensured the success of the LiMux project in Munich. The
relationship with each stakeholder group needs to be built by means of different measures.

NB: The points below are intended not as recommendations but as indicating the outcome
of the learning process during the project:

Workshop: Legal aspects of free and open source software
__

 99

 The core team is the prime mover of the project and the origin of its success. Staff
belonging to the core team regard themselves as promoters of the open source
community.

 The City Council is a fellow campaigner and sponsor of the project and, as a
messenger with a mission to the public, requires up-to-date, open communication
about the progress of the project.

 The Umbrella Staff Committee and its business unit Staff Committees are an
influential and competent stakeholder group, whose involvement is particularly
necessary at the beginning of the project.

 The IT management team acts as a promoter of the project, always keeping an eye
on the business units’ practical constraints. Together with the City Council, it
constitutes the project governance structure.

 The IT managers and technical leaders ensure the sustainability of the migration
process and must therefore be encouraged to become fellow campaigners or even
promoters of the project.

 IT staff are the Achilles heel of the project: unless there are plenty of staff with
open-source know-how, a lasting changeover to open source technology is not
possible.

 Management must be thoroughly involved in the role-based structural model, in
order to set an example to staff: otherwise, there is a danger of impasses and
passive resistance.

 Staff are satisfied that the new work station is functioning as an aid to the ongoing
provision of services to the public.

 The open source community is a highly accessible source of strength for such a
project. Exchanges of know-how and knowledge on a not-for-profit basis are a
guarantor of the success of the whole open source movement.

 Openness calls for transparency, and transparency is always a basis for acceptance.
As acceptance is ultimately what matters, there is no alternative to open
communication, including with external stakeholder groups.

Upon closer inspection it becomes clear that, in conjunction, the City Council, the IT
management, unit project leaders and the project team are the driving and stabilising
forces in the whole transformation process. In the course of the project, three positions, in
particular, have changed fundamentally: the Staff Committee, after playing a more active
role in the early stages of the project, is now less important, while the unit project leaders
and IT staff have become significantly more positive about the Limux project. The attitudes
of the other stakeholders have largely remained unchanged. With regard to quality, too,
the stakeholders are not all alike. For example, management and IT staff are very
heterogeneous: there are almost equal numbers of strong advocates and critics. The
project team and also the IT management, on the other hand, each constitute a very
homogeneous group. Contrary to some rumours, the instigator of the project and political
authority – the City Council – has not changed its attitude: it has been a strong promoter
throughout. Over the years, it has proved possible, over all, to persuade some stakeholders
to abandon the position of wishing to express no opinion and to involve them in the project.

In 2013 this project is going to be finished as a project and the responsibility for the
development, release management and maintenance of the LiMux client is going to be part
of the regular business line. The IT of one of the largest municipalities in Germany is now
independent, free and modern. Munich’s IT development regarding the LiMux client is
completed as a project. The LiMux project has proved equal to its role as a ‘flagship’
project. Now it only remains for many other municipalities, authorities and organisations to
follow its lead.

Policy Department C: Citizens' Rights and Constitutional Affairs
__

 100

5. BIBLIOGRAPHY

 Acohido, B. USA TODAY, 13.07.2003:
http://www.usatoday.com/money/industries/technology/2003-07-13-microsoft-
linux-munich_x.htm

 Freeman, R.E. (1984) Strategic Management. A Stakeholder Approach. Pitman,
1984

 Lang, C. (2010) Die Stakeholderanalyse im Rahmen des projectmanagements.

 Moser, P. (2007) Stakeholdermanagement zur optimalen Gestaltung strategischen
Wandels

 Theuvsen, L., Schauer, R., Gmür, M. (2010) Stakeholder-Management in Nonprofit-
Organisationen.

